Computer Project # 2 *RLC-Circuits*

<u>Goal</u>: Investigate the charge on a capacitor in an *RLC* circuit with varying voltage. **Tools needed**: ode45, plot routines.

Description: If Q(t) = charge on a capacitor at time t in an RLC circuit (with R, L and C being the resistance, inductance and capacitance, respectively, and E(t) = applied voltage), then Kirchoff's Laws give the following 2^{nd} order differential equation for Q(t):

Questions: Assume L = 1, $C = \frac{1}{5}$, R = 4 and $E(t) = 8 \cos \omega t$.

- (1) Use **ode45** (and plot routines) to plot the solution of (*) with Q(0) = 0 and Q'(0) = 0 over the interval $0 \le t \le 50$ for $\omega = 0, 1, 2, 4, 8, 16$.
- (2) For each of these 6 plots, find the largest value of |Q(t)| over $30 \le t \le 50$ and fill in the table:

ω	Max value of $ Q(t) $ on $30 \le t \le 50$
0	
1	
2	
4	
8	
16	

(3) Does increasing ω appear to increase the maximum charge |Q(t)| on the capacitor ? Interpret this result in terms of an equivalent spring-mass system.

Remark:	There is an	analogy	between	spring-mass	systems	and RLC	circuits	given	bv :	
HUCHIGI K.	THOIC ID all	analogy	DCUWCCII	spring mass	Systems	and muc	Chicanos	SIVOI	Dy i	•

Spring-Mass System	RLC CIRCUIT				
$mu^{\prime\prime}+cu^{\prime}+ku=F(t)$	$LQ''+RQ'+rac{1}{C}Q=E(t)$				
u = Displacement	Q = Charge				
u' = Velocity	Q' = I = Current				
m = Mass	L = Inductance				
c = Damping constant	R = Resistance				
k = Spring constant	$1/C = (\text{Capacitance})^{-1}$				
F(t) = External force	E(t) = Voltage				