Contents

1. Exam 1

1. (10 pts) Determine a lower bound for the radius of convergence of series solutions

$$
\left(x^{2}-4 x+5\right) y^{\prime \prime}+(x+3) y^{\prime}+4\left(x^{2}-4 x+5\right) y=0
$$

about $x_{0}=1$.
2. Consider the differential equation

$$
(x-2)^{2}(x+1) y^{\prime \prime}+3\left(x^{2}+x-6\right) y^{\prime}+(4 x+1) y=0 .
$$

(a) (8 pts) Show that $x_{0}=2$ is a regular singular point.
(b) (7 pts) Find the indicial equation of a series solution of the form

$$
y=\phi(r, x)=\sum_{n=0}^{\infty} a_{n}(r)(x-2)^{r+n}
$$

and also find the exponents at the singular point $x_{0}=2$.
3. Consider a series solution $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ about $x_{0}=0$ of

$$
y^{\prime \prime}-x y^{\prime}-2 y=0
$$

(a) (10 pts) Find the recurrence relation for a_{n}.
(b) (5 pts) Find a general formula for a_{n}.
(c) (5 pts) Find two linearly independent series solutions.
4. (15 pts) Use the Laplace transform to solve the initial value problem

$$
y^{\prime \prime}-7 y^{\prime}+12 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

5.

(a) (8 pts) Use the definition of the Laplace transform

$$
\mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

to show that

$$
\mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a} \quad \text { for } s>a
$$

(b) (7 pts) Find the Laplace transform of

$$
f(t)=\left[2(t-5)^{2}+\cos (t-5)+4\right] u_{5}(t)
$$

6. (10 pts) Find the inverse Laplace transform of

$$
F(s)=\frac{(s+1) e^{-7 s}}{s^{2}-6 s+13}
$$

7. Consider the initial value problem

$$
(\dagger) \quad \phi^{\prime}(t)-\int_{0}^{t}(t-\xi)^{2} \phi(\xi) d \xi=\delta(t-3), \quad \phi(0)=1
$$

(a) (8 pts) Convert the differential equation (\dagger) to an algebraic equation in $\Phi(s)=\mathcal{L}\{\phi(t)\}$ (but do not solve the equation).
(b) (7 pts) Let $\phi(t)$ be the solution of the equation (\dagger). Evaluate the following integral

$$
\int_{0}^{\infty} e^{-s t}(2 \phi(t)+\sin 3 t) d t
$$

2. Exam 1-Solution

1. (10 pts) Determine a lower bound for the radius of convergence of series solutions

$$
\left(x^{2}-4 x+5\right) y^{\prime \prime}+(x+3) y^{\prime}+4\left(x^{2}-4 x+5\right) y=0
$$

about $x_{0}=1$.
Solution) Note that $x_{0}=1$ is an ordinary point and

$$
p(x)=\frac{x+3}{x^{2}-4 x+5}, \quad q(x)=4
$$

The roots of $x^{2}-4 x+5=0$ are $2+i$ and $2-i$. The distance from $x_{0}=1$ to the nearest root $2+i$ is $\sqrt{2}$ (you may take $2-i$ as well), and so the radius of convergence of $p(x)$ is $\rho_{p}=\sqrt{2}$. The radius of convergence of $q(x)$ is $\rho_{q}=\infty$. Therefore, $\min \{\sqrt{2}, \infty\}=\sqrt{2}$ and so we find that the radius of convergence ρ of the series solution is at least $\sqrt{2}$, which is a lower bound.
2. Consider the differential equation

$$
(x-2)^{2}(x+1) y^{\prime \prime}+3\left(x^{2}+x-6\right) y^{\prime}+(4 x+1) y=0
$$

(a) (8 pts) Show that $x_{0}=2$ is a regular singular point.

Solution) Clearly, $x_{0}=2$ is a singular point because

$$
(x-2)^{2}(x+1)=0 \Longrightarrow x=2,-1
$$

Use $x^{2}+x-6=(x-2)(x+3)$ and compute

$$
p_{0}=\lim _{x \rightarrow 2}(x-2) p(x)=\lim _{x \rightarrow 2}(x-2) \frac{3(x-2)(x+3)}{(x-2)^{2}(x+1)}=\lim _{x \rightarrow 2} \frac{3(x+3)}{(x+1)}=5
$$

and

$$
q_{0}=\lim _{x \rightarrow 2}(x-2)^{2} q(x)=\lim _{x \rightarrow 2}(x-2)^{2} \frac{4 x+1}{(x-2)^{2}(x+1)}=\lim _{x \rightarrow 2} \frac{4 x+1}{x+1}=3
$$

Therefore $x_{0}=1$ is a regular singular point.
(b) (7 pts) Find the indicial equation of a series solution of the form

$$
y=\phi(r, x)=\sum_{n=0}^{\infty} a_{n}(r)(x-2)^{r+n}
$$

and also find the exponents at the singular point $x_{0}=2$.
Solution) The indicial equation is

$$
0=r(r-1)+p_{0} r+q_{0}=r(r-1)+5 r+3 \Longrightarrow r^{2}+4 r+3=0 \Longrightarrow r=-1,-3
$$

and the exponents of singularity at $x_{0}=2$ are $r=-1,-3$.
3. Consider a series solution $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ about $x_{0}=0$ of

$$
y^{\prime \prime}-x y^{\prime}-2 y=0
$$

(a) (10 pts) Find the recurrence relation for a_{n}.
(b) (5 pts) Find a general formula for a_{n}.
(c) (5 pts) Find two linearly independent series solutions.

Solution) (a) Compute

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}, \quad y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
$$

and put $y, y^{\prime}, y^{\prime \prime}$ into the differential equation to find that

$$
\begin{aligned}
0 & =y^{\prime \prime}-x y^{\prime}-2 y \\
& =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-x \sum_{n=1}^{\infty} n a_{n} x^{n-1}-2 \sum_{n=0}^{\infty} a_{n} x^{n} \\
& =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=1}^{\infty} n a_{n} x^{n}-2 \sum_{n=0}^{\infty} a_{n} x^{n}
\end{aligned}
$$

Use the shifting formula $n \rightarrow n+2$

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}
$$

to get

$$
\begin{aligned}
0 & =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=1}^{\infty} n a_{n} x^{n}-2 \sum_{n=0}^{\infty} a_{n} x^{n} \\
& =\left(2 a_{2}-2 a_{0}\right)+\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}-(n+2) a_{n}\right]
\end{aligned}
$$

and

$$
\left\{\begin{array}{l}
a_{2}=a_{0} \\
(n+2)(n+1) a_{n+2}-(n+2) a_{n}=0, \quad n \geq 1
\end{array}\right.
$$

(b) The recurrence relation can be simplified to

$$
a_{n+2}=\frac{1}{n+1} a_{n}, \quad n \geq 1 .
$$

Considering even and odd cases we see that

$$
a_{2 m}=\frac{a_{0}}{1 \cdot 3 \cdot 5 \cdots(2 m-3) \cdot(2 m-1)}, \quad m \geq 1
$$

and

$$
a_{2 m+1}=\frac{a_{1}}{2 \cdot 4 \cdot 6 \cdots(2 m-2) \cdot(2 m)}, \quad m \geq 0
$$

(c) The general solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{0}+\sum_{m=1}^{\infty} a_{2 m} x^{2 m}+\sum_{m=0}^{\infty} a_{2 m+1} x^{2 m+1} \\
& =a_{0}+\sum_{m=1}^{\infty} \frac{a_{0}}{1 \cdot 3 \cdot 5 \cdots(2 m-3) \cdot(2 m-1)} x^{2 m}+\sum_{m=0}^{\infty} \frac{a_{1}}{2 \cdot 4 \cdot 6 \cdots(2 m-2) \cdot(2 m)} x^{2 m+1}
\end{aligned}
$$

and so

$$
y_{1}(x)=1+\sum_{m=1}^{\infty} \frac{1}{1 \cdot 3 \cdot 5 \cdots(2 m-3) \cdot(2 m-1)} x^{2 m}
$$

and

$$
y_{2}(x)=\sum_{m=0}^{\infty} \frac{1}{2 \cdot 4 \cdot 6 \cdots(2 m-2) \cdot(2 m)} x^{2 m+1}
$$

are two linearly independent solutions.
4. (15 pts) Use the Laplace transform to solve the initial value problem

$$
y^{\prime \prime}-7 y^{\prime}+12 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Solution) Set $Y(s)=\mathcal{L}\{y(t)\}$ and compute the Laplace transform

$$
\begin{aligned}
0 & =\mathcal{L}\left\{y^{\prime \prime}-7 y^{\prime}+12 y\right\} \\
& =\left[s^{2} Y(s)-s y(0)-y^{\prime}(0)\right]-7[s Y(s)-y(0)]+12 Y(s) \\
& =\left[s^{2} Y(s)-s\right]-7[s Y(s)-1]+12 Y(s) \\
& =\left(s^{2}-7 s+12\right) Y(s)-s+7
\end{aligned}
$$

Solve for $Y(s)$ and compute the partial fractions

$$
Y(s)=\frac{s+3}{s^{2}-7 s+12}=\frac{s-7}{(s-3)(s-4)}=\frac{4}{s-3}-\frac{3}{s-4}
$$

Taking the inverse Laplace transform we find that

$$
y(t)=\mathcal{L}^{-1}\{Y(s)\}=4 \mathcal{L}^{-1}\left\{\frac{1}{s-3}\right\}-3 \mathcal{L}^{-1}\left\{\frac{1}{s-4}\right\}=4 e^{3 t}-3 e^{4 t}
$$

5.

(a) (8 pts) Use the definition of the Laplace transform

$$
\mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

to show that

$$
\mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a} \quad \text { for } s>a
$$

Solution) By the definition

$$
\mathcal{L}\left\{e^{a t}\right\}=\int_{0}^{\infty} e^{-s t} e^{a t} d t=\int_{0}^{\infty} e^{-(s-a) t} d t=\lim _{A \rightarrow \infty}\left[\frac{e^{-(s-a) t}}{-(s-a)}\right]_{0}^{A}=\lim _{A \rightarrow \infty} \frac{e^{-(s-a) A}}{-(s-a)}+\frac{1}{s-a}=\frac{1}{s-a}
$$

because $\lim _{A \rightarrow \infty} e^{-k A}=0$ for $k=s-a>0$.
(b) (7 pts) Find the Laplace transform of

$$
f(t)=\left[2(t-5)^{2}+\cos (t-5)+4\right] u_{5}(t)
$$

Solution) Note that

$$
f(t)=h(t-5) u_{5}(t)
$$

where

$$
h(t)=2 t^{2}+\cos t+4 \Longrightarrow H(s)=\mathcal{L}\{h(t)\}=\frac{4}{s^{3}}+\frac{s}{s^{2}+1}+\frac{4}{s} .
$$

By the general formula

$$
\mathcal{L}\{f(t)\}=e^{-5 s} H(s)=e^{-5 s}\left(\frac{4}{s^{3}}+\frac{s}{s^{2}+1}+\frac{4}{s}\right)
$$

6. (10 pts) Find the inverse Laplace transform of

$$
F(s)=\frac{(s+1) e^{-7 s}}{s^{2}-6 s+13}
$$

Solution) Write

$$
F(s)=\frac{(s+1) e^{-7 s}}{s^{2}-6 s+13}=e^{-7 s} H(s)
$$

where

$$
H(s)=\frac{(s+1)}{s^{2}-6 s+13}=\frac{s-3}{(s-3)^{2}+4}+2 \frac{2}{(s-3)^{2}+4} \Longrightarrow h(t)=\mathcal{L}^{-1}\{H(s)\}=e^{3 t} \cos 2 t+2 e^{3 t} \sin 2 t
$$

from $s^{2}-6 s+13=(s-3)^{2}+4$. We see that

$$
f(t)=\mathcal{L}^{-1}\{F(s)\}=\mathcal{L}^{-1}\left\{e^{-7 s} H(s)\right\}=h(t-7) u_{7}(t)=\left[e^{3(t-7)} \cos 2(t-7)+2 e^{3(t-7)} \sin 2(t-7)\right] u_{7}(t)
$$

7. Consider the initial value problem

$$
(\dagger) \quad \phi^{\prime}(t)-\int_{0}^{t}(t-\xi)^{2} \phi(\xi) d \xi=\delta(t-3), \quad \phi(0)=1
$$

(a) (8 pts) Convert the differential equation (\dagger) to an algebraic equation in $\Phi(s)=\mathcal{L}\{\phi(t)\}$ (but do not solve the equation).

Solution) Let $\Phi(s)=\mathcal{L}\{\phi(t)\}, f(t)=t^{2}$ and $F(s)=\mathcal{L}\{f(t)\}=\frac{2}{s^{3}}$. Note that we may rewrite the equation (\dagger) as follows:

$$
\phi^{\prime}(t)-(f * \phi)(t)=\delta(t-3) .
$$

Take the Laplace transforms on both sides to see
$\mathcal{L}\left\{\phi^{\prime}(t)\right\}+\mathcal{L}\{(f * \phi)(t)\}=\mathcal{L}\{\delta(t-3)\} \Longrightarrow(s \Phi(s)-\phi(0))-F(s) \Phi(s)=e^{-3 s} \Longrightarrow\left(s-\frac{2}{s^{3}}\right) \Phi(s)=1+e^{-3 s}$.
(b) (7 pts) Let $\phi(t)$ be the solution of the equation (\dagger). Evaluate the following integral

$$
\int_{0}^{\infty} e^{-s t}(2 \phi(t)+\sin 3 t) d t
$$

Solution) Note that

$$
\int_{0}^{\infty} e^{-s t}(2 \phi(t)+\sin 3 t) d t=2 \mathcal{L}\{\phi(t)\}+\mathcal{L}\{\sin 3 t\}=2 \Phi(s)+\frac{3}{s^{2}+9}=\frac{2 s^{3}\left(1+e^{-3 s}\right)}{s^{4}-1}+\frac{3}{s^{2}+9}
$$

because

$$
\left(s-\frac{2}{s^{3}}\right) \Phi(s)=1+e^{-3 s} \Longrightarrow \Phi(s)=\frac{s^{3}\left(1+e^{-3 s}\right)}{s^{4}-2}
$$

from (a).

