MATLAB. 1

Texts:
[B-D] Boyce \& Diprima, Elementary Diff. Eq. \& B.V. Problems, 8th Ed [P-A] Polking \& Arnold, ODEs using MATLAB, 3nd Ed
A. Getting Started with MATLAB

Read Chapters 1 and 3 in Polking. Do this before trying to go on.
B. More on Functions

Once a function $\mathrm{y}=\mathrm{g}(\mathrm{x})$ is defined with a M-file you now know how to graph it on an interval $[a, b]$ using the plot command. First you partition $[a, b]$. Next you evaluate g at these values. The plot command then plots these vertices connecting them by lines to give a piecewise linear approximation to the graph of g.

Example: Plot sin(x^2) on [-1,4]. First we make an M-file.
function $y=g(x)$
$\mathrm{y}=\sin (\mathrm{x} . \wedge 2)$;
**

Go to the command window and type:

```
x=-1:.1:4;
plot(x,g(x))
title('y=sin(x^2)')
```

$* *$

Note $x=[-1,-.9, . ., 3.9,4]$ and $g(x)=[g(-1), g(-.9), \ldots, g(3.9), g(4)]$. The graph is pretty crude because g oscillates more as x increases. A second way to graph is with the command fplot.

Example: (continued)
Go to the command window and type:
fplot('g(x)',[-1,4])

One of the conveniences of fplot is, given g.m, it determines how fine the partition of $[a, b]$ needs to be (what the vector x should
be) so that the piecewise linear approximation gives an accurate picture. A second feature of fplot is that it does not require g.m to be written with array smart notation as is required when using plot.

CAUTION!! Don't name a function $y(x)$ (that is, use the file y.m); fplot will not plot it. Also fplot only recognizes " x " as the independent variable. So type "fplot('g(x)',[-1,4])", not "fplot('g(t)',[-1,4])" even if you used " t " as the independent variable in g.m.

ASSIGNMENT 1:
A. a) Let $A=\begin{array}{rr}1 & 7 \\ 0 & -3\end{array} \quad B=\begin{array}{rr}-3 & 2 \\ 3 & -2\end{array} \quad \begin{array}{rrr}C= & 4 & 1 \\ -2 & -1 & 4 \\ 0 & -4 & 3\end{array}$

$$
v=\left[\begin{array}{ll}
3 & 5
\end{array}\right] \quad w=\left[\begin{array}{ll}
2 & -9
\end{array}\right]^{\prime} \quad x=\left[\begin{array}{ll}
-4 & 3
\end{array}\right] \quad y=\left[\begin{array}{lll}
0 & 6 & -3
\end{array}\right] .
$$

Note []' is the transpose of [].
Try to find the following combinations in MATLAB. Which are defined and which are not? Where a combination is not defined explain why.

A*A \quad A*B \quad A* $C \quad$ A.*A $\quad A+B \quad A+C \quad A . / C \quad A . \backslash B$
A*x $\quad x^{*} A \quad v^{*} A \quad x .{ }^{*} A \quad A .{ }^{*} x \quad y^{*} C \quad C^{*} x \quad C^{*} y$
$A^{*} v \quad y . \wedge 2 \quad y \wedge 2 \quad A \wedge 2 \quad x+y \quad v^{*} w \quad x^{*} w \quad x . *_{w}$
b) Show that $A=\begin{array}{rr}1 & -2 \\ 0 & 3\end{array}$ and $\begin{array}{rrr}B= & -2 & -3 \\ 0 & 1\end{array}$ commute.
c) Consider the initial value problem

$$
\begin{aligned}
z^{\prime}(x)+4 * z(x) & =0 \\
z(0) & =1 \\
z^{\prime}(0) & =-2 .
\end{aligned}
$$

From Section 5.2 in $[B-D]$ we have a power series representation for $z(x)$:

$$
z=a 0+a 1^{*} x+a 2^{*} x^{\wedge} 2+\ldots
$$

where $a 0=z(0)=1$ and $a 1=z '(0)=-2$.
From Math 262 you can solve the i.v.p. exactly: $z=\cos \left(2^{*} x\right)-\sin \left(2^{*} x\right)$ (for a review of this see Chapter 3 in [B-D]).
First find $a 2$ and $a 3$. Then make M.files for the three functions

$$
\begin{aligned}
& z 2(x)=a 0+a 1^{*} x+a 2^{*} x \cdot \wedge 2, \\
& z 3(x)=a 0+a 1^{*} x+a 2^{*} x \cdot \wedge 2+a 3^{*} x \cdot \wedge 3, \text { and } \\
& z(x)=\cos \left(2^{*} x\right)-\sin \left(2^{*} x\right) \text { for } x \text { in }[0, p i / 2] .
\end{aligned}
$$

Plot the three curves on the same figure. Use different line styles for each curve, and label the figure appropriately.
B. Graph $f(x)=\cos (x . \wedge 4)$ on $[0,2]$.
a) Use the plot command with subintervals of length $h=.2$.
b) Use fplot.

FOR ALL OF YOUR MATLAB GRAPHING HOMEWORK FOR THIS COURSE TITLE YOUR GRAPHS .

