$\underline{\underline{\text { Study Guide \# }} 1}$

1. Vectors in \mathbb{R}^{2} and \mathbb{R}^{3}
(a) $\overrightarrow{\mathbf{v}}=\langle a, b, c\rangle=a \overrightarrow{\mathbf{i}}+b \overrightarrow{\mathbf{j}}+c \overrightarrow{\mathbf{k}}$; vector addition and subtraction geometrically using parallelograms spanned by $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$; length or magnitude of $\overrightarrow{\mathbf{v}}=\langle a, b, c\rangle,|\overrightarrow{\mathbf{v}}|=\sqrt{a^{2}+b^{2}+c^{2}}$; directed vector from $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ to $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ given by $\overrightarrow{\mathbf{v}}=\overline{P_{0} P_{1}}=P_{1}-P_{0}=$ $\left\langle x_{1}-x_{0}, y_{1}-y_{0}, z_{1}-z_{0}\right\rangle$.
(b) Dot (or inner) product of $\overrightarrow{\mathbf{a}}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\overrightarrow{\mathbf{b}}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$: $\quad \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$; properties of dot product; useful identity: $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{a}}=|\overrightarrow{\mathbf{a}}|^{2}$; angle between two vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$:
$\cos \theta=\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|} ; \overrightarrow{\mathbf{a}} \perp \overrightarrow{\mathbf{b}}$ if and only if $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$; the vector in \mathbb{R}^{2} with length r with angle θ is $\overrightarrow{\mathbf{v}}=\langle r \cos \theta, r \sin \theta\rangle:$

(c) Projection of $\overrightarrow{\mathbf{b}}$ along $\overrightarrow{\mathbf{a}}$: $\quad \operatorname{proj}_{\vec{a}} \overrightarrow{\mathbf{b}}=\left\{\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}|}\right\} \frac{\overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|}$; Work $=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{D}}$.

(d) Cross product (only for vectors in \mathbb{R}^{3}):

$$
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{cc}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \overrightarrow{\mathbf{i}}-\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \overrightarrow{\mathbf{j}}+\left|\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \overrightarrow{\mathbf{k}}
$$

properties of cross products; $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ is perpendicular (orthogonal or normal) to both $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$; area of parallelogram spanned by $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is $A=|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|$:

the area of the triangle spanned is $A=\frac{1}{2}|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|$:

Volume of the parallelopiped spanned by $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ is $V=|\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})|$:

2. Equation of a line L through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ with direction vector $\overrightarrow{\mathbf{d}}=\langle a, b, c\rangle$:

Vector Form: $\overrightarrow{\mathbf{r}}(t)=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t \overrightarrow{\mathbf{d}}$.

Parametric Form: $\left\{\begin{array}{l}x=x_{0}+a t \\ y=y_{0}+b t \\ z=z_{0}+c t\end{array}\right.$

$\underline{\text { Symmetric Form: }}: \frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$. (If say $b=0$, then $\frac{x-x_{0}}{a}=\frac{z-z_{0}}{c}, y=y_{0}$.)
3. Equation of the plane through the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and perpendicular to the vector $\overrightarrow{\mathbf{n}}=\langle a, b, c\rangle$ $\left(\overrightarrow{\mathbf{n}}\right.$ is a normal vector to the plane) is $\left\langle\left(x-x_{0}\right),\left(y-y_{0}\right),\left(z-z_{0}\right)\right\rangle \cdot \overrightarrow{\mathbf{n}}=0$; Sketching planes (consider x, y, z intercepts).

4. Quadric surfaces (can sketch them by considering various traces, i.e., curves resulting from the intersection of the surface with planes $x=k, y=k$ and/or $z=k$); some generic equations have the form:
(a) Ellipsoid: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
(b) Elliptic Paraboloid: $\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$
(c) Hyperbolic Paraboloid (Saddle): $\frac{z}{c}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}$
(d) Cone: $\frac{z^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$
(e) Hyperboloid of One Sheet: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$
(f) Hyperboloid of Two Sheets: $\quad-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
5. Vector-valued functions $\overrightarrow{\mathbf{r}}(t)=\langle f(t), g(t), h(t)\rangle$; tangent vector $\overrightarrow{\mathbf{r}}^{\prime}(t)$ for smooth curves, unit tangent vector $\overrightarrow{\mathbf{T}}(t)=\frac{\overrightarrow{\mathbf{r}}^{\prime}(t)}{\left|\overrightarrow{\mathbf{r}}^{\prime}(t)\right|}$; unit normal vector $\overrightarrow{\mathbf{N}}(t)=\frac{\overrightarrow{\mathbf{T}}^{\prime}(t)}{\left|\overrightarrow{\mathbf{T}}^{\prime}(t)\right|}$ differentiation rules for vector functions, including:
(i) $\{\phi(t) \overrightarrow{\mathbf{v}}(t)\}^{\prime}=\phi(t) \overrightarrow{\mathbf{v}}^{\prime}(t)+\phi^{\prime}(t) \overrightarrow{\mathbf{v}}(t)$, where $\phi(t)$ is a real-valued function
(ii) $(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}})^{\prime}=\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}^{\prime}+\overrightarrow{\mathbf{u}}^{\prime} \cdot \overrightarrow{\mathbf{v}}$
(iii) $(\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}})^{\prime}=\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}^{\prime}+\overrightarrow{\mathbf{u}}^{\prime} \times \overrightarrow{\mathbf{v}}$
(iv) $\{\overrightarrow{\mathbf{v}}(\phi(t))\}^{\prime}=\phi^{\prime}(t) \overrightarrow{\mathbf{v}}^{\prime}(\phi(t))$, where $\phi(t)$ is a real-valued function
6. Integrals of vector functions $\int \overrightarrow{\mathbf{r}}(t) d t=\left\langle\int f(t) d t, \int g(t) d t, \int h(t) d t\right\rangle$; arc length of curve parameterized by $\overrightarrow{\mathbf{r}}(t)$ is $L=\int_{a}^{b}\left|\overrightarrow{\mathbf{r}}^{\prime}(t)\right| d t$; arc length function $s(t)=\int_{a}^{t}\left|\overrightarrow{\mathbf{r}}^{\prime}(u)\right| d u$; reparameterize by arc length: $\quad \overrightarrow{\boldsymbol{\sigma}}(s)=\overrightarrow{\mathbf{r}}(t(s))$, where $t(s)$ is the inverse of the arc length function $s(t)$; the curvature of a curve parameterized by $\overrightarrow{\mathbf{r}}(t)$ is $\kappa=\frac{\left|\overrightarrow{\mathbf{T}}^{\prime}(t)\right|}{\left|\overrightarrow{\mathbf{r}}^{\prime}(t)\right|} . \quad$ Note: $\quad \sqrt{\alpha^{2}}=|\alpha|$.
7. $\overrightarrow{\mathbf{r}}(t)=$ position of a particle, $\overrightarrow{\mathbf{r}}^{\prime}(t)=\overrightarrow{\mathbf{v}}(t)=$ velocity; $\overrightarrow{\mathbf{a}}(t)=\overrightarrow{\mathbf{v}}^{\prime}(t)=\overrightarrow{\mathbf{r}}^{\prime \prime}(t)=$ acceleration; $\left|\overrightarrow{\mathbf{r}}^{\prime}(t)\right|=|\overrightarrow{\mathbf{v}}(t)|=$ speed; Newton's $2^{\text {nd }}$ Law: $\overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}$.
8. Domain and range of a function $f(x, y)$ and $f(x, y, z)$; level curves (or contour curves) of $f(x, y)$ are the curves $f(x, y)=k$; using level curves to sketch surfaces; level surfaces of $f(x, y, z)$ are the surfaces $f(x, y, z)=k$.
9. Limits of functions $f(x, y)$ and $f(x, y, z)$; limit of $f(x, y)$ does not exist if different approaches to (a, b) yield different limits; continuity.
10. Partial derivatives $\frac{\partial f}{\partial x}(x, y)=f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}$, $\frac{\partial f}{\partial y}(x, y)=f_{y}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h} ;$ higher order derivatives: $f_{x y}=\frac{\partial^{2} f}{\partial y \partial x}$, $f_{y y}=\frac{\partial^{2} f}{\partial y^{2}}, f_{y x}=\frac{\partial^{2} f}{\partial x \partial y}$, etc; mixed partials.
11. Equation of the tangent plane to the graph of $z=f(x, y)$ at $\left(x_{0}, y_{0}, z_{0}\right)$ is given by $z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)$.
12. Total differential for $z=f(x, y)$ is $\quad d z=d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y$; total differential for $w=f(x, y, z)$ is $\quad d w=d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z$; linear approximation for $z=f(x, y)$ is given by $\Delta z \approx d z$, i.e., $f(x+\Delta x, y+\Delta y)-f(x, y) \approx \frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y$, where $\Delta x=d x, \Delta y=d y$;

Linearization of $f(x, y)$ at (a, b) is given by $L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)$; $L(x, y) \approx f(x, y)$ near (a, b).
13. Different forms of the Chain Rule: Form 1, Form 2; General Form: Tree diagrams. For example:
(a) If $z=f(x, y)$ and $\left\{\begin{array}{l}x=x(t) \\ y=y(t)\end{array}\right.$, then $\frac{d f}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}$:

$\mathbf{z = f}(\mathbf{x}, \mathrm{y})$

(b) If $z=f(x, y)$ and $\left\{\begin{array}{l}x=x(s, t) \\ y=y(s, t)\end{array}\right.$, then

$$
\frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \quad \text { and } \quad \frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}:
$$

etc.....

14. Implicit Differentiation:

Part I: If $F(x, y)=0$ defines y as function of $x \quad$ (i.e., $y=y(x)$), then to compute $\frac{d y}{d x}$, differentiate both sides of the equation $F(x, y)=0$ w.r.t. x and solve for $\frac{d y}{d x}$.
If $F(x, y, z)=0$ defines z as function of x and y (i.e. $z=z(x, y)$), then to compute $\frac{\partial z}{\partial x}$, differentiate the equation $F(x, y, z)=0$ w.r.t. x (hold y fixed) and solve for $\frac{\partial z}{\partial x}$. For $\frac{\partial z}{\partial y}$, differentiate the equation $F(x, y, z)=0$ w.r.t. y (hold x fixed) and solve for $\frac{\partial z}{\partial y}$.
Part II: If $F(x, y)=0$ defines y as function of $x \Longrightarrow \frac{d y}{d x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$;
while if $F(x, y, z)=0$ defines z as function of x and $y \Longrightarrow \frac{\partial z}{\partial x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}$ and $\frac{\partial z}{\partial y}=-\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}$.
15. Gradient vector for $f(x, y): \nabla f(x, y)=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle$, properties of gradients; gradient points in direction of maximum rate of increase of $f ; \nabla f\left(x_{0}, y_{0}\right) \perp$ level curve $f(x, y)=C$ and, in the case of 3 variables, $\nabla f\left(x_{0}, y_{0}, z_{0}\right) \perp$ level surface $f(x, y, z)=C$:

16. Directional derivative of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$ in the direction $\overrightarrow{\mathbf{u}}: D_{\overrightarrow{\mathbf{u}}} f\left(x_{0}, y_{0}\right)=\nabla f\left(x_{0}, y_{0}\right) \cdot \overrightarrow{\mathbf{u}}$, where $\overrightarrow{\mathbf{u}}$ must be a unit vector; tangent planes to level surfaces $f(x, y, z)=C$ (a normal vector at $\left(x_{0}, y_{0}, z_{0}\right)$ is $\left.\overrightarrow{\mathbf{n}}=\nabla f\left(x_{0}, y_{0}, z_{0}\right)\right)$.

