Covers all of Section 7.6, 8.1, 8.2, 8.3, 8.4, and all of 4.5

1. Find the exact value of the expression.
$\sin ^{-1}\left[\sin \left(\frac{2 \pi}{3}\right)\right]$
A. $\frac{\pi}{3}$
B. $\frac{2 \pi}{3}$
C. $\frac{-\pi}{3}$
D. $\frac{4 \pi}{3}$
E. None of the above
2. Approximate the solutions of the equation, to four decimals, in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

$$
5 \sin ^{2} x-\sin x-2=0
$$

A. $-0.7373,0.9633$
B. $-0.5708,0.8335$
C. $-0.4820,1.4245$
D. $-0.5403,0.7403$
E. None of the above

Covers all of Section 7.6, 8.1, 8.2, 8.3, 8.4, and all of 4.5
3. Find the exact value of the expression.

$$
\cos \left[2 \sin ^{-1}\left(\frac{x}{5}\right)\right]
$$

A. $\frac{10 x-2 x^{2}}{25}$
B. $\frac{5-2 x}{5}$
C. $\frac{2 x \sqrt{25-x^{2}}}{25}$
D. $\frac{25-2 x^{2}}{25}$
E. None of the above
4. There are two distinct triangles possible with a side $a=12.0 \mathrm{~cm}$, side $b=17.0 \mathrm{~cm}$, and angle $\alpha=38^{\circ}$. Find the perimeter of both triangles to the nearest tenth of a cm .
A. $50.0 \mathrm{~cm}, 39.6 \mathrm{~cm}$
B. $52.7 \mathrm{~cm}, 44.8 \mathrm{~cm}$
C. $48.3 \mathrm{~cm}, 36.5 \mathrm{~cm}$
D. $49.1 \mathrm{~cm}, 37.4 \mathrm{~cm}$
E. None of the above

Covers all of Section 7.6, 8.1, 8.2, 8.3, 8.4, and all of 4.5
5. Height of a hot-air balloon. The angles of elevation of a balloon from two points A and B on level ground are $A=22^{\circ} 20^{\prime}$ and $B=41^{\circ} 20^{\prime}$, respectively. The points A and B are 8.8 miles apart and the balloon is between the points, in the same vertical plane. Approximate, to the nearest tenth, the height of the balloon above the ground.
A. 2.5 miles
B. 3.1 miles
C. 3.3 miles
D. 2.7 miles
E. None of the above
6. The lengths of the sides of a triangle are 20, 21, and 31. To the nearest degree, find the measure of the largest angle in the triangle.
A. 82°
B. 102°
C. 98°
D. 78°
E. None of the above

Covers all of Section 7.6, 8.1, 8.2, 8.3, 8.4, and all of 4.5
7. Distance between ships. A ship leaves port at 1:40 p.m. and travels $\mathrm{S} 33^{\circ} \mathrm{E}$ at the rate of $24 \mathrm{mi} / \mathrm{hr}$. Another ship leaves the same port at 1:40 p.m. and travels $\mathrm{S} 20^{\circ} \mathrm{W}$ at $9 \mathrm{mi} / \mathrm{hr}$. Approximate, to the nearest tenth of a mile, how far apart the ships are at 3:00 p.m.?
A. 27.5 miles
B. 26.6 miles
C. 28.3 miles
D. 29.4 miles
E. None of the above
8. Given vectors $a=-2 i+5 j$ and $b=3 i-j$, find $4 a+5 b$
A. $6 i+14 j$
B. $4 i+20 j$
C. $5 i+25 j$
D. $8 i+12 j$
E. None of the above
9. Find the vector that has 5 times the magnitude and is in the same direction as $\langle 5,-12\rangle$.
A. $\langle 25,-60\rangle$
B. $\left\langle\frac{25}{13}, \frac{-60}{13}\right\rangle$
C. $\left\langle\frac{5}{13}, \frac{-12}{13}\right\rangle$
D. $\left\langle 1, \frac{-12}{5}\right\rangle$
E. None of the above

Covers all of Section 7.6, 8.1, 8.2, 8.3, 8.4, and all of 4.5
10. The magnitudes and directions of two forces acting at a point P are given in (a) and (b). Approximate, to the nearest tenth, the magnitude of the resultant vector.
(a) $5.5 \mathrm{~kg}, 111^{\circ}$
(b) $2.7 \mathrm{~kg}, 210^{\circ}$
A. 6.5 kg
B. 6.1 kg
C. 5.3 kg
D. 5.7 kg
E. None of the above
11. An airplane with airspeed of $350 \mathrm{mi} / \mathrm{hr}$ is flying in the direction 76°, and a $50 \mathrm{mi} / \mathrm{hr}$ wind is blowing in the direction of 100°. Approximate, to the nearest degree, the plane's true course.
A. 81°
B. 79°
C. 82°
D. 78°
E. None of the above

Covers all of Section 7.6, 8.1, 8.2, 8.3, 8.4, and all of 4.5
12. Determine m such that the two vectors are orthogonal.

$$
a=3 m i+4 j, b=i+9 j
$$

A. $m=-12$
B. $m=\frac{3}{4}$
C. $m=12$
D. $m=\frac{-3}{4}$
E. None of the above
13. Find a function in x that satisfies the following conditions.

Vertical asymptotes: $x=2, x=-4$
Horizontal Asymptote: $y=0$
x-intercept: $-5, f(1)=12$
A. $f(x)=\frac{-27(x+5)}{(x-2)(x+4)}$
B. $f(x)=\frac{10(x-5)}{(x+2)(x-4)}$
C. $f(x)=\frac{27(x-5)}{(x+2)(x-4)}$
D. $f(x)=\frac{-10(x+5)}{(x-2)(x+4)}$
E. None of the above

Covers all of Section 7.6, 8.1, 8.2, 8.3, 8.4, and all of 4.5
For Questions 14 and 15, use the function: $f(x)=\frac{3 x^{2}+4 x}{x^{2}+2 x-15}$
14. What is the horizontal asymptote?
A. $y=0$
B. $y=3$
C. There is no \quad horizontal asymptote
D. $y=\frac{-4}{15}$
E. None of the above
15. What are the vertical asymptotes?
A. $x=5, x=-3$
B. $x=0, x=\frac{-4}{3}$
C. $x=-5, x=3$
D. $x=0, x=\frac{4}{3}$
E. None of the above

Exam 3 Answers

Question	Answers	
1.	$\frac{\pi}{3}$	A
2.	-0.5708, 0.8335	B
3.	$\frac{25-2 x^{2}}{25}$	D
4.	$48.3 \mathrm{~cm}, 36.5 \mathrm{~cm}$	C
5.	2.5 miles	A
6.	98°	C
7.	26.6 miles	B
8.	$7 i+15 j$	E
9.	$\langle 25,-60\rangle$	A
10.	5.7 kg	D
11.	79°	B
12.	$m=-12$	A
13.	$f(x)=\frac{-10(x+5)}{(x-2)(x+4)}$	D
14.	$y=3$	B
15.	$x=-5, x=3$	C

