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C H A P T E R

2
Matrices and Systems
of Linear Equations

Algebra is the intellectual instrument which has been created for rendering clear
the quantitative aspects of the world. — Alfred North Whitehead

We will see in the later chapters that most problems in linear algebra can be reduced
to questions regarding the solutions of systems of linear equations. In preparation for
this, the next two chapters provide a detailed introduction to the theory and solution
techniques for such systems. An example of a linear system of equations in the unknowns
x1, x2, x3 is

3x1 + 4x2 − 7x3 = 5,
2x1 − 3x2 + 9x3 = 7,
7x1 + 2x2 − 3x3 = 4.

We see that this system is completely determined by the array of numbers


3 4 −7 5

2 −3 9 7
7 2 −3 4


 ,

which contains the coefficients of the unknowns on the left-hand side of the system and
the numbers appearing on the right-hand side of the system. Such an array is an example
of a matrix. In this chapter we see that, in general, linear systems of equations are best
represented in terms of matrices and that, once such a representation has been made, the
set of all solutions to the system can be easily determined. In the first few sections of
this chapter we therefore introduce the basics of matrix algebra. We then apply matrices
to solve systems of linear equations. In Chapter 7, we will see how matrices also give a
natural framework for formulating and solving systems of linear differential equations.
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112 CHAPTER 2 Matrices and Systems of Linear Equations

2.1 Matrices: Definitions and Notation

We begin our discussion of matrices with a definition.

DEFINITION 2.1.1

An m × n (read “m by n”) matrix is a rectangular array of numbers arranged in m
horizontal rows and n vertical columns. Matrices are usually denoted by uppercase
letters, such as A and B. The entries in the matrix are called the elements of the
matrix.

Example 2.1.2 The following are examples of a 2× 3 and a 3× 3 matrix, respectively:

A =

 3

2
5
4

1
5

0 − 3
7

5
9


 , B =


2 −1 3

1 1 −1
0 0 1


 .

�

We will use the index notation to denote the elements of a matrix. According to this
notation, the element in the ith row and j th column of the matrix A will be denoted aij .
Thus, for the matrices in the previous example we have

a13 = 1
5 , a22 = − 3

7 , b23 = −1, and so on.

Using the index notation, a general m× n matrix A is written

A =



a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn


 ,

or, in a more abbreviated form, A = [aij ].

Remark The expression m × n representing the number of rows and columns of a
general matrix A is sometimes informally called the size of the matrix A. The numbers
m and n themselves are sometimes called the dimensions1 of the matrix A.

Next we define what is meant by equality of matrices.

DEFINITION 2.1.3

Two matrices A and B are equal, written A = B, if

1. They both have the same size, m× n.

2. All corresponding elements in the matrices are equal: aij = bij for all i and j
with 1 ≤ i ≤ m and 1 ≤ j ≤ n.

1Be careful not to confuse this usage of the term with the dimension of a vector space, which will be
introduced in Chapter 4.
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2.1 Matrices: Definitions and Notation 113

According to Definition 2.1.3, even though the matrices

A =
[

1 2 3
4 5 6

]
and B =


4 2

3 6
1 5




contain the same six numbers, and therefore store the same basic information, they are
not equal as matrices.

Row Vectors and Column Vectors
Of particular interest to us in the future will be 1× n and n× 1 matrices. For this reason
we give them special names.

DEFINITION 2.1.4

A 1×nmatrix is called a row n-vector. An n×1 matrix is called a column n-vector.
The elements of a row or column n-vector are called the components of the vector.

Remarks

1. We can refer to the objects just defined simply as row vectors and column vectors
if the value of n is clear from the context.

2. We will see later in this chapter that when a system of linear equations is written
using matrices, the basic unknown in the reformulated system is a column vector.
A similar formulation will also be given in Chapter 7 for systems of differential
equations.

Example 2.1.5 The matrix a = [ 2
3 − 1

5
4
7

]
is a row 3-vector and

b =




1
−1

3
4




is a column 4-vector. �
As indicated here, we usually denote a row or column vector by a lowercase letter

in bold print.
Associated with any m × n matrix are m row n-vectors and n column m-vectors.

These are referred to as the row vectors of the matrix and the column vectors of the
matrix, respectively.

Example 2.1.6 Associated with the matrix

A =

−2 1 3 4

1 2 1 1
3 −1 2 5




are the row 4-vectors[−2 1 3 4
]
,

[
1 2 1 1

]
, and

[
3 −1 2 5

]
,
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114 CHAPTER 2 Matrices and Systems of Linear Equations

and the column 3-vectors
−2

1
3


 ,


 1

2
−1


 ,


3

1
2


 , and


4

1
5


 . �

Conversely, if a1, a2, . . . , an are each columnm-vectors, then we let [a1, a2, . . . , an]
denote the m× n matrix whose column vectors are a1, a2, . . . , an. Similarly, if b1,b2,

. . . ,bm are each row n-vectors, then we write


b1
b2
...

bm




for the m × n matrix with row vectors b1,b2, . . . ,bm. The reader should observe that
a list of vectors arranged in a row will always consist of column vectors, while a list of
vectors arranged in a column will always consist of row vectors.

Example 2.1.7 If a1 =
[

1
5
2
3

]
, a2 =

[
4
7
5
9

]
, and a3 =

[
− 1

3
3

11

]
, then

[a1, a2, a3] =
[

1
5

4
7 − 1

3
2
3

5
9

3
11

]
. �

DEFINITION 2.1.8

If we interchange the row vectors and column vectors in anm×nmatrixA, we obtain
an n × m matrix called the transpose of A. We denote this matrix by AT . In index
notation, the (i, j)th element of AT , denoted aTij , is given by

aTij = aji .

Example 2.1.9 If

A =
[

1 2 6 2
0 3 4 7

]
,

then

AT =




1 0
2 3
6 4
2 7


 .

If

A =

1 3 5

2 0 7
3 4 9


 ,
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2.1 Matrices: Definitions and Notation 115

then

AT =

1 2 3

3 0 4
5 7 9


 .

�

Square Matrices
An n × n matrix is called a square matrix, since it has the same number of rows as
columns. If A is a square matrix, then the elements aii , 1 ≤ i ≤ n, make up the main
diagonal, or leading diagonal, of the matrix. (See Figure 2.1.1 for the 3× 3 case.)

a31 a32 a33

a21 a22 a23

a11 a12 a13

Figure 2.1.1: The main diagonal of a 3× 3 matrix.

The sum of the main diagonal elements of an n× n matrix A is called the trace of
A and is denoted tr(A). Thus,

tr(A) = a11 + a22 + · · · + ann.
An n × n matrix A is said to be lower triangular if aij = 0 whenever i < j (zeros
everywhere above (i.e.. “northeast of”) the main diagonal), and it is said to be upper
triangular if aij = 0 whenever i > j (zeros everywhere below (i.e., “southwest of”) the
main diagonal). The following are examples of an upper triangular and lower triangular
matrix, respectively: 

 1 −8 5
0 −3 9
0 0 4


 ,


 2 0 0

0 1 0
−6 7 −3


 .

Observe that the transpose of a lower (upper) triangular matrix is an upper (lower)
triangular matrix.

If every element on the main diagonal of a lower (upper) triangular matrix is a 1,
the matrix is called a unit lower (upper) triangular matrix.

An n × n matrix D = [dij ] that has all off-diagonal elements equal to zero is
called a diagonal matrix. Note that a matrix D is a diagonal matrix if and only if D is
simultaneously upper and lower triangular. Such a matrix is completely determined by
giving its main diagonal elements, since dij = 0 whenever i �= j . Consequently, we can
specify a diagonal matrix in the compact form

D = diag(d1, d2, . . . , dn),

where di denotes the diagonal element dii .

Example 2.1.10 The 4× 4 diagonal matrix D = diag(1, 2, 0, 3) is

D =




1 0 0 0
0 2 0 0
0 0 0 0
0 0 0 3


 .

�
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116 CHAPTER 2 Matrices and Systems of Linear Equations

The transpose naturally picks out two important types of square matrices as follows.

DEFINITION 2.1.11

1. A square matrix A satisfying AT = A is called a symmetric matrix.

2. If A = [aij ], then we let −A denote the matrix with elements −aij . A square
matrix A satisfying AT= −A is called a skew-symmetric (or anti-symmetric)
matrix.

Example 2.1.12 The matrix

A =




1 −1 1 5
−1 2 2 6

1 2 3 4
5 6 4 9




is symmetric, whereas

B =




0 −1 −5 3
1 0 1 −2
5 −1 0 7
−3 2 −7 0




is skew-symmetric. �
Notice that the main diagonal elements of the skew-symmetric matrix in the preceding
example are all zero. This is true in general, since if A is a skew-symmetric matrix, then
aij = −aji , which implies that when i = j , aii = −aii , so that aii = 0.

Matrix and Vector Functions
Later in the text we will be concerned with systems of two or more differential equations.
The most effective way to study such systems, as it turns out, is to represent the system
using matrices and vectors. However, we will need to allow the elements of the matrices
and vectors that arise to contain functions of a single variable, not just real or complex
numbers. This leads to the following definition, reminiscent of Definition 2.1.1.

DEFINITION 2.1.13

Anm×nmatrix functionA is a rectangular array withm rows and n columns whose
elements are functions of a single real variable t .

Example 2.1.14 Here are two examples of matrix functions:

A(t) =
[
t3 t − cos t 5

et
2

ln (t + 1) tet

]
and B(t) =


 5− t + t2 sin(e2t )

−1 tan t
6 6− t


 .

A matrix function A(t) is defined only for real values of t such that all elements in A(t)
assume a well-defined value. The function A is defined only for real values of t with
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2.1 Matrices: Definitions and Notation 117

t > −1, since ln (t + 1) is defined only for t > −1. The reader should determine the
values of t for which the matrix function B is defined. �

Remark It is possible, of course, to consider matrix functions of more than one
variable. However, this will not be particularly relevant for our purposes in this text.

Finally in this section, we have the following special type of matrix function.

DEFINITION 2.1.15

An n× 1 matrix function is called a column n-vector function.

For instance,

[
t2

−6tet

]
is a column 2-vector function.2

Exercises for 2.1

Key Terms
Matrices, Elements, Size (dimensions) of a matrix, Row
vector, Column vector, Square matrix, Main diagonal,
Trace, Lower (Upper) triangular matrix, Unit lower (upper)
triangular matrix, Diagonal matrix, Symmetric matrix,
Skew-symmetric matrix, Matrix function, Column n-vector
function.

Skills

• Be able to determine the elements of a matrix.

• Be able to identify the size (i.e., dimensions) of a ma-
trix.

• Be able to identify the row and column vectors of a
matrix.

• Be able to determine the components of a row or col-
umn vector.

• Be able to say whether or not two given matrices are
equal.

• Be able to find the transpose of a matrix.

• Be able to compute the trace of a square matrix.

• Be able to recognize square matrices that are upper
triangular, lower triangular, or diagonal.

• Be able to recognize square matrices that are symmet-
ric or skew-symmetric.

• Be able to determine the values of the variable t such
that a matrix function A is defined.

True-False Review

For Questions 1–10, decide if the given statement is true or
false, and give a brief justification for your answer. If true,
you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.

1. A diagonal matrix must be both upper triangular and
lower triangular.

2. An m × n matrix has m column vectors and n row
vectors.

3. If A is a symmetric matrix, then so is AT .

4. The trace of a matrix is the product of the elements
along the main diagonal.

5. A skew-symmetric matrix must have zeros along the
main diagonal.

6. A matrix that is both symmetric and skew-symmetric
cannot contain any nonzero elements.

7. The matrix functions

√
t 3t2

1

|t | sin 2t


 and

[−2+ t ln t
esin t −3

]

are defined for exactly the same values of t .

2We could, of course, also speak of row n-vector functions as the 1× n matrix functions, but we will not
need them in this text.
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118 CHAPTER 2 Matrices and Systems of Linear Equations

8. The matrix function


cos t t2

−2 −t
et

1√
t − 3




is defined for all positive real numbers t .

9. Any matrix of numbers is a matrix function defined
for all real values of the variable t .

10. If A and B are matrix functions such that the matrices
A(0) and B(0) are the same, then we should consider
A and B to be the same matrix function.

Problems
1. If

A =

 1 −2 3 2

7 −6 5 −1
0 2 −3 4


 ,

determine a31, a24, a14, a32, a21, and a34.

For Problems 2–6, write the matrix with the given elements.
In each case, specify the dimensions of the matrix.

2. a11 = 1, a21 = −1, a12 = 5, a22 = 3.

3. a11 = 2, a12 = 1, a13 = −1, a21 = 0, a22 =
4, a23 = −2.

4. a11 = −1, a41 = −5, a31 = 1, a21 = 1.

5. a11 = 1, a31 = 2, a42 = −1, a32 = 7, a13 =
−2, a23 = 0, a33 = 4, a21 = 3, a41 = −4, a12 =
−3, a22 = 6, a43 = 5.

6. a12 = −1, a13 = 2, a23 = 3, aji = −aij ,
1 ≤ i ≤ 3, 1 ≤ j ≤ 3.

For Problems 7–9, determine tr(A) for the given matrix.

7. A =
[

1 0
2 3

]
.

8. A =

 1 2 −1

3 2 −2
7 5 −3


.

9. A =

 2 0 1

3 2 5
0 1 −5


.

For Problems 10–12, write the column vectors and row vec-
tors of the given matrix.

10. A =
[

1 −1
3 5

]
.

11. A =

 1 3 −4
−1 −2 5

2 6 7


.

12. A =
[

2 10 6
5 −1 3

]
.

13. If a1 = [1 2], a2 = [3 4], and a3 = [5 1], write
the matrix

A =

 a1

a2
a3


 ,

and determine the column vectors of A.

14. If

b1 =

 2
−1

4


 , b2 =


 5

7
−6


 ,

b3 =

 0

0
0


 , b4 =


 1

2
3


 ,

write the matrix B = [b1,b2,b3,b4] and determine
the row vectors of B.

15. If a1, a2, . . . , ap are each column q-vectors, what are
the dimensions of the matrix that has a1, a2, . . . , ap
as its column vectors?

For Problems 16–20, give an example of a matrix of the
specified form.

16. 3× 3 diagonal matrix.

17. 4× 4 upper triangular matrix.

18. 4× 4 skew-symmetric matrix.

19. 3× 3 upper triangular symmetric matrix.

20. 3× 3 lower triangular skew-symmetric matrix.

For Problems 21– 24, give an example of a matrix function
of the specified form.

21. 2×3 matrix function defined only for values of t with
−2 ≤ t < 3.

22. 4× 2 matrix function A such that

A(0) = A(1) �= A(2).

23. 1× 5 matrix function A that is nonconstant such that
all elements of A(t) are positive for all t in R.

24. 2× 1 matrix function A that is nonconstant such that
all elements of A(t) are in [0, 1] for every t in R.
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25. Construct distinct matrix functions A and B defined
on all of R such that A(0) = B(0) and A(1) = B(1).

26. Prove that a symmetric upper triangular matrix is
diagonal.

27. Determine all elements of the 3 × 3 skew-symmetric
matrix A with a21 = 1, a31 = 3, a23 = −1.

2.2 Matrix Algebra

In the previous section we introduced the general idea of a matrix. The next step is to
develop the algebra of matrices. Unless otherwise stated, we assume that all elements of
the matrices that appear are real or complex numbers.

Addition and Subtraction of Matrices and Multiplication of
a Matrix by a Scalar
Addition and subtraction of matrices is defined only for matrices with the same dimen-
sions. We begin with addition.

DEFINITION 2.2.1

If A and B are both m× n matrices, then we define addition (or the sum) of A and
B, denoted by A+B, to be them× nmatrix whose elements are obtained by adding
corresponding elements of A and B. In index notation, if A = [aij ] and B = [bij ],
then A+ B = [aij + bij ].

Example 2.2.2 We have

[
2 −1 3
4 −5 0

]
+
[−1 0 5
−5 2 7

]
=
[

1 −1 8
−1 −3 7

]
. �

Properties of Matrix Addition: If A and B are both m× n matrices, then

A+ B = B + A (matrix addition is commutative),
A+ (B + C) = (A+ B)+ C (matrix addition is associative).

Both of these properties follow directly from Definition 2.2.1.

In order that we can model oscillatory physical phenomena, in much of the later
work we will need to use complex as well as real numbers. Throughout the text we will
use the term scalar to mean a real or complex number.

DEFINITION 2.2.3

IfA is anm×nmatrix and s is a scalar, then we let sA denote the matrix obtained by
multiplying every element of A by s. This procedure is called scalar multiplication.
In index notation, if A = [aij ], then sA = [saij ].

Example 2.2.4 If A =
[

2 −1
4 6

]
, then 5A =

[
10 −5
20 30

]
. �


