1) Given the right triangle at the right, find the exact length of the side labeled x. Rationalize the denominator, if necessary.

		$\sin \left(60^{\circ}\right)=\frac{o p p}{h y p}=\frac{45}{x}$
A	$45 \sqrt{2}$	$\frac{\sqrt{3}}{2}=\frac{45}{x}$
B	$\frac{45 \sqrt{3}}{2}$	$x \sqrt{3}=90$
C	90	$x=\frac{90}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{90 \sqrt{3}}{3}=30 \sqrt{3}$
D	$30 \sqrt{3}$	
E	$\frac{45 \sqrt{2}}{2}$	

2) Find the approximate value of $\sec \left(\frac{156 \pi}{5}\right)$ to 4 decimal places. Check the mode on your calculator.

$$
\begin{array}{ll}
A & -1.2361 \\
B & -0.1395 \\
C & -0.8090 \\
D & -7.1695 \\
E & 1.0099
\end{array}
$$

$$
\begin{aligned}
& \sec \left(\frac{156 \pi}{5}\right)=\frac{1}{\cos \left(\frac{156 \pi}{5}\right)} \text { Put calculator in radian mode. } \\
& =\frac{1}{\cos (98.01769079)}=\frac{1}{-0.809016994} \\
& \approx-1.2361
\end{aligned}
$$

3) Find the area of the sector formed by the central angle shown. Approximate to the nearest tenth if necessary.

A 11,520 square units
B 1440 square units
C 201.1 square units

$$
\begin{aligned}
& A=\frac{1}{2} r^{2} \theta \quad \theta \text { must be in radians } \\
& 160^{\circ}\left(\frac{\pi}{180^{\circ}}\right)=\frac{8 \pi}{9} \\
& A=\frac{1}{2}(12)^{2}\left(\frac{8 \pi}{9}\right) \\
& A=\frac{1}{2}(144)\left(\frac{8 \pi}{9}\right)=8(8 \pi)=64 \pi \\
& A \approx 201.1
\end{aligned}
$$

4) Kyle is standing on level ground 30 feet from the base of a flagpole. He finds the angle of elevation from his feet to the top of the pole is 72°. Approximate the distance from Kyle's feet to the top of the flagpole to the nearest tenth of a foot.

A	31.5 ft.	$\cos \left(72^{\circ}\right)=\frac{30}{d}$
B	92.3 ft.	$d\left(\cos \left(72^{\circ}\right)\right)=30$
C	$63.0 \mathrm{ft}$.	$d=\frac{30}{\cos \left(72^{\circ}\right)}=\frac{30}{0.309016994} \approx 97.1$
D	$97.1 \mathrm{ft}$.	
E	None of the above.	

5) Which statement(s) below is(are) true?

I	$\cos \pi=-1$
II	$\tan \left(-\frac{\pi}{2}\right)$ is undefined
III	$\csc \left(\frac{3 \pi}{2}\right)=1$

A I and III only
$B \quad$ II and III only
C I only
$D \quad$ II only
$E \quad$ I and II only

These are all quadrantal angles.

$$
\cos \pi=-1
$$

$\tan \left(-\frac{\pi}{2}\right)=\tan \left(\frac{3 \pi}{2}\right)$ is undefined (zero den.)
$\csc \left(\frac{3 \pi}{2}\right)=\frac{1}{\sin \left(\frac{3 \pi}{2}\right)}=\frac{1}{-1}=-1$
Answer: I and II only

6) Find the exact value of $\cot \left(\frac{5 \pi}{6}\right)$.

$$
\begin{array}{ll}
A & \frac{1}{\sqrt{3}} \\
B & -\frac{1}{\sqrt{3}} \\
C & -1 \\
D & \sqrt{3} \\
E & \text { None of the above. }
\end{array}
$$

$$
\begin{aligned}
& \cot \left(\frac{5 \pi}{6}\right)=\frac{1}{\tan \left(\frac{5 \pi}{6}\right)} \\
& \frac{5 \pi}{6} \text { is a } 30^{\circ} \text { angle in QII, tangent is negative } \\
& =\frac{1}{-\tan \left(\frac{\pi}{6}\right)}=\frac{1}{\frac{-1}{\sqrt{3}}}=-\sqrt{3}
\end{aligned}
$$

Answer is not listed; none of the above.
7) Approximate to the nearest tenth of a degree, all angles θ in the interval $\left[0^{\circ}, 360^{\circ}\right.$) that satisfy the equation $\sin \theta=-0.294$. Check mode on calculator.

A $\quad \theta=197.1^{\circ}, \theta=342.9^{\circ}$
B $\quad \theta=107.1^{\circ}, \theta=287.1^{\circ}$
C $\quad \theta=17.1^{\circ}, \theta=162.9^{\circ}$
D $\quad \theta=72.9^{\circ}, \theta=252.9^{\circ}$
E $\quad \theta=162.9^{\circ}, \theta=197.1^{\circ}$

Put calculator in degree mode. Use the value 0.294 and the $2^{\text {nd }}$ and sine keys to find the reference angle.

$$
\theta_{R}=17.1^{\circ}
$$

The sine is negative in Q III and IV.

$$
\theta=180^{\circ}+17.1^{\circ}=197.1^{\circ}
$$

and $\theta=360^{\circ}-17.1^{\circ}=342.9^{\circ}$
8) Which statement below is false?
A Angles $\frac{5 \pi}{6}$ and -210° are coterminal angles.
B Angles with measurements of $25^{\circ} 12^{\prime}$ and 64.8° are complementary.
C If $\theta=980^{\circ}$, then the reference angle $\theta_{R}=10^{\circ}$.
D If the $\cos \theta>0$ and $\tan \theta<0$, then θ is in quadrant IV.
$E \quad$ Given point $\left(-\frac{3}{5}, \frac{4}{5}\right)$ that is $P(t)$ on a unit circle, then $P(-t)$ is $\left(-\frac{3}{5},-\frac{4}{5}\right)$.

A Convert both to between 0 and 360 degrees: $\frac{5 \pi}{6}=\frac{5 \pi}{6}\left(\frac{180^{\circ}}{\pi}\right)=150^{\circ}-210^{\circ}+360^{\circ}=150^{\circ}$ Both are equivalent to 150°; are coterminal
B Convert to minutes to a decimal, add the two angle measurements: $12^{\prime}=12^{\prime}\left(\frac{1^{\circ}}{60^{\prime}}\right)=0.2$

$$
25.2^{\circ}+64.8^{\circ}=90.0^{\circ}
$$

Angles are complementary, since they have a sum of 90°.
C Get θ between 0 and 360 degrees: $980^{\circ}-2\left(360^{\circ}\right)=260^{\circ}$
$\theta_{R}=260^{\circ}-180^{\circ}=80^{\circ} \quad$ This is the false statement.
D The cosine is positive in Q I and IV. The tangent is negative in Q II and IV. Therefore, the quadrant for both conditions is Q IV.
E The given point $P(t)$ is in Q II. The negative of t would be in Q III; both coordinates should be negative.
9) Which statement below is false about the graph of $y=\frac{2}{3} \sin \left(2 x+\frac{\pi}{2}\right)$?
$A \quad$ The phase shift is $\frac{\pi}{4}$.
$B \quad$ The graph crosses the y-axis at $\frac{2}{3}$.
C The amplitude is $\frac{2}{3}$.
$D \quad$ The period is π.
$E \quad$ One place where the graph crosses the x-axis is $\frac{3 \pi}{4}$.

The amplitude of the graph is $|a|=\frac{2}{3}$. The period is $\frac{2 \pi}{|b|}=\frac{2 \pi}{2}=\pi$.
The phase shift is $-\frac{c}{b}=\frac{-\frac{\pi}{2}}{2}=-\frac{\pi}{4}$. Sketch the graph of the function. The y-intercept is $2 / 3$. There are x -intercepts at $\frac{\pi}{4},-\frac{\pi}{4}, \frac{3 \pi}{4}$, and $-\frac{3 \pi}{4}$.

The false statement is the one about the phase shift.
10) Given a point $P(t)=\left(\frac{3}{4},-\frac{\sqrt{7}}{4}\right)$ on a unit circle, find the value of $\sec t$ and $\tan t$.
A $\quad \sec t=\frac{-4}{3}, \quad \tan t=\frac{-\sqrt{7}}{3}$
B $\quad \sec t=\frac{4}{3}, \quad \tan t=\frac{\sqrt{7}}{4}$
C $\quad \sec t=\frac{3}{4}, \quad \tan t=\frac{-3}{\sqrt{7}}$
D $\quad \sec t=\frac{4}{3}, \quad \tan t=\frac{-\sqrt{7}}{3}$
$E \quad \sec t=\frac{-4}{3}, \quad \tan t=\frac{-3}{\sqrt{7}}$

The x coordinate is the cosine of t and the y coordinate is the sine of t.
$\sec t=\frac{1}{\cos t}=\frac{1}{\frac{3}{4}}=\frac{4}{3}$
$\tan t=\frac{\sin t}{\cos t}=\frac{\frac{-\sqrt{7}}{4}}{\frac{3}{4}}=\frac{-\sqrt{7}}{3}$
11) $\frac{\cos (-x)-\csc (-x)}{\cos x}$ is equivalent to which of the following? Hint: Begin with the negative formulas.

A $\quad 1+\csc x \cos x$
B $\quad 1+\csc x \sec x$
$C \quad \csc x \sec x-1$
D $\quad 1-\csc x \sec x$
E $\quad \sin x \sec x-1$

$$
\begin{aligned}
\frac{\cos (-x)-\csc (-x)}{\cos x} & =\frac{\cos x-(-\csc x)}{\cos x} \\
& =\frac{\cos x}{\cos x}+\frac{\csc x}{\cos x} \\
& =1+\csc x\left(\frac{1}{\cos x}\right) \\
& =1+\csc x \sec x
\end{aligned}
$$

12) What is the period of the graph below?

A period can be found from $\frac{\pi}{4}$ (halfway between 0 and $\frac{\pi}{2}$) to $\frac{5 \pi}{4}\left(\frac{\pi}{4}\right.$ right of π). That equals π radians. Period is π.
13) Find the equation, in the form $y=a \sin (b x+c)$, where $a>0, b>0$, and c is the least positive real number for a sine curve with a period of 4 , an amplitude of 2 , and a phase shift of -1 .

$$
\begin{array}{ll}
A & y=2 \sin (4 x+1) \\
B & y=2 \sin \left(\frac{\pi}{2} x+\frac{\pi}{2}\right) \\
C & y=2 \sin (\pi x+\pi) \\
D & y=2 \sin \left(\frac{\pi}{4} x+\frac{\pi}{4}\right) \\
E & y=2 \sin \left(\frac{\pi}{2} x+2 \pi\right)
\end{array}
$$

$a=2$ (amplitude)
Period: $\frac{2 \pi}{b}=4 \rightarrow 4 b=2 \pi \rightarrow b=\frac{\pi}{2}$
Phase Shift:

$$
\begin{aligned}
& -\frac{c}{b}=\frac{-c}{\frac{\pi}{2}}=\frac{-2 c}{\pi}=-1 \rightarrow-2 c=-\pi \rightarrow c=\frac{\pi}{2} \\
& y=2 \sin \left(\frac{\pi}{2} x+\frac{\pi}{2}\right)
\end{aligned}
$$

14) Find the exact value of $\sec \theta$ if θ is in standard position and the terminal side of θ is in quadrant II and is parallel to the line $5 x+2 y=7$.

A $\sec \theta=\frac{-\sqrt{29}}{2}$
B $\sec \theta=\frac{-\sqrt{29}}{5}$
C $\sec \theta=\frac{\sqrt{29}}{2}$
D $\sec \theta=\frac{-5}{\sqrt{29}}$
$E \quad \sec \theta=\frac{-2}{\sqrt{29}}$

The slope of the line $=$ the tangent of the angle.
$m=-\frac{5}{2}=\tan \theta=\frac{o p p}{a d j}$
The length of the hypotenuse can be found using the Pythagorean theorem.
$\cos \theta=\frac{-2}{\sqrt{29}} \rightarrow \sec \theta=\frac{-\sqrt{29}}{2}$
The answer could also be found using the identity $1+\tan ^{2} \theta=\sec ^{2} \theta$.
15) Which statement(s) below is(are) true about the graph of $y=\cos x-3$?

This is a basic cosine graph shifted 3

I The graph contains the point $\left(-\frac{\pi}{2},-3\right)$.
II The graph crosses the y-axis at -2 .
III The graph never crosses the x-axis.
A I and II only
$B \quad$ I and III only
C II and III only
$D \quad$ II only
$E \quad$ I, II, and III
down. The basic graph would contain the point $\left(\frac{-\pi}{2}, 0\right)$. Shift down 3, you get $\left(\frac{-\pi}{2},-3\right)$. Statement I is true. The range is $[-4,-2]$. Since the cosine graph begins at the maximum height, the y-intercept will be -2. Statement II is true. Also, from the range, it can be determined that the graph never crosses the x-axis. Statement III is true.
I, II, and III

