MA 108

Math-The Language of Engineers
 by

Stan Żak

School of Electrical and Computer Engineering
Purdue University
November 10, 2011

Let Me Introduce Myself to You

- https://engineering.purdue.edu/ECE/People/

Outline

- What is math?

Outline

- What is math?
- Some pure math problems

Outline

- What is math?
- Some pure math problems
- Engineering challenge problems

Outline

- What is math?
- Some pure math problems
- Engineering challenge problems
- Optimization and control apps

Outline

- What is math?
- Some pure math problems
- Engineering challenge problems
- Optimization and control apps
- Comments on computational tools

Outline

- What is math?
- Some pure math problems
- Engineering challenge problems
- Optimization and control apps
- Comments on computational tools
- Some cool math applications

Outline

- What is math?
- Some pure math problems
- Engineering challenge problems
- Optimization and control apps
- Comments on computational tools
- Some cool math applications
- Conclusions

What Is Math?

- A part of the human search for understanding

What Is Math?

- A part of the human search for understanding
- "Mathematical discoveries have come both from the attempt to describe the natural world and from the desire to arrive at a form of inescapable truth from careful reasoning"-Kenyon College Math Department Web Page

Pure Math vs. Applied Math

- The Millennium Prize Problems

Pure Math vs. Applied Math

- The Millennium Prize Problems
- http://www.claymath.org/millennium/

Engineering Grand Challenges

- 14 grand challenges for engineering in the 21-st century identified by the National Academy of Engineering

Engineering Grand Challenges

- 14 grand challenges for engineering in the 21-st century identified by the National Academy of Engineering
- http://www.engineeringchallenges.org/cms/8996/9221.aspx

Optimization

- An act, process, or methodology of making something (as a design, system, or decision) as fully perfect, functional, or effective as possible. The mathematical procedures (as finding the maximum of a function) involved in this

Optimization

- An act, process, or methodology of making something (as a design, system, or decision) as fully perfect, functional, or effective as possible. The mathematical procedures (as finding the maximum of a function) involved in this
- Optimization \equiv making the best decision

Optimization

- An act, process, or methodology of making something (as a design, system, or decision) as fully perfect, functional, or effective as possible. The mathematical procedures (as finding the maximum of a function) involved in this
- Optimization \equiv making the best decision
- Engineering design, management, etc

Optimization

- An act, process, or methodology of making something (as a design, system, or decision) as fully perfect, functional, or effective as possible. The mathematical procedures (as finding the maximum of a function) involved in this
- Optimization \equiv making the best decision
- Engineering design, management, etc
- What does "best" mean?

Objective function

- Measure "goodness" by a function f (Cost function or objective function)

Objective function

- Measure "goodness" by a function f (Cost function or objective function)
- Want to minimize f. (Smaller = better)

Objective function

- Measure "goodness" by a function f (Cost function or objective function)
- Want to minimize f. (Smaller = better)
- $\Omega=$ set of all possible choices (Feasible set)

Notation

- \mathbb{R}^{n} denotes a set of real n-tuples

Notation

- \mathbb{R}^{n} denotes a set of real n-tuples
- $x \in \mathbb{R}^{n}$ means

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad x_{i} \in \mathbb{R}
$$

Notation

- \mathbb{R}^{n} denotes a set of real n-tuples
- $x \in \mathbb{R}^{n}$ means

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad x_{i} \in \mathbb{R}
$$

- f is a real-valued function on n variables,

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Example

-

$$
f=f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+7
$$

an example of a real-valued function of two variables,

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

Example

-

$$
f=f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+7
$$

an example of a real-valued function of two variables,

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

-

$$
\boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \mapsto a=f\left(x_{1}, x_{2}\right) \in \mathbb{R}
$$

Optimization problem

-

$\min \quad f(\boldsymbol{x})$
 subject to $\quad \boldsymbol{x} \in \Omega$

Optimization problem

-

$$
\begin{aligned}
\min & f(\boldsymbol{x}) \\
\text { subject to } & \boldsymbol{x} \in \Omega
\end{aligned}
$$

- What about maximization?
(Bigger = better)

Optimization problem

-

$$
\begin{aligned}
\min & f(\boldsymbol{x}) \\
\text { subject to } & \boldsymbol{x} \in \Omega
\end{aligned}
$$

- What about maximization?
(Bigger = better)
- How to solve optimization problem?

Optimization problem

-

$$
\begin{aligned}
\min & f(\boldsymbol{x}) \\
\text { subject to } & \boldsymbol{x} \in \Omega
\end{aligned}
$$

- What about maximization?
(Bigger = better)
- How to solve optimization problem?
- Analytically

Optimization problem

-

$$
\begin{aligned}
\min & f(\boldsymbol{x}) \\
\text { subject to } & \boldsymbol{x} \in \Omega
\end{aligned}
$$

- What about maximization?
(Bigger = better)
- How to solve optimization problem?
- Analytically
- Numerically

Example: Linear regression

- Given points on the plane:

$$
\left(t_{0}, y_{0}\right), \ldots,\left(t_{n}, y_{n}\right)
$$

Example: Linear regression

- Given points on the plane:

$$
\left(t_{0}, y_{0}\right), \ldots,\left(t_{n}, y_{n}\right)
$$

- Want to find the "line of best fit" through these points

Example: Linear regression

- Given points on the plane:

$$
\left(t_{0}, y_{0}\right), \ldots,\left(t_{n}, y_{n}\right)
$$

- Want to find the "line of best fit" through these points
- Best = minimize the average squared error

Minimizing the average squared error

Line of best fit

- Equation of line: $y=m t+c$

Line of best fit

- Equation of line: $y=m t+c$
- Optimization problem: Find m and c to

$$
\min \frac{1}{n} \sum_{i=0}^{n}\left(m t_{i}+c-y_{i}\right)^{2}
$$

Line of best fit

- Equation of line: $y=m t+c$
- Optimization problem: Find m and c to

$$
\min \frac{1}{n} \sum_{i=0}^{n}\left(m t_{i}+c-y_{i}\right)^{2}
$$

- Solution: In this case we can find the solution analytically (using least-squares theory)

Line of best fit

- Equation of line: $y=m t+c$
- Optimization problem: Find m and c to

$$
\min \frac{1}{n} \sum_{i=0}^{n}\left(m t_{i}+c-y_{i}\right)^{2}
$$

- Solution: In this case we can find the solution analytically (using least-squares theory)
- Related application: system identification

Battery charger circuit

Charger circuit specifications

Current	I_{1}	I_{2}	I_{3}	I_{4}	I_{5}
Upper Limit (Amps)	4	3	3	2	2
Lower Limit (Amps)	0	0	0	0	0

Design objective

Find I_{1}, \ldots, I_{5} to maximize power transferred to batteries, that is,

$$
\begin{aligned}
\max & 10 I_{2}+6 I_{4}+20 I_{5} \\
\text { subject to } & I_{1}=I_{2}+I_{3} \\
& I_{3}=I_{4}+I_{5} \\
& I_{1} \leq 4 \\
& I_{2} \leq 3 \\
& I_{3} \leq 3 \\
& I_{4} \leq 2 \\
& I_{5} \leq 2 \\
& I_{1}, I_{2}, I_{3}, I_{4}, I_{5} \geq 0
\end{aligned}
$$

Solving example problem

- This is a linear programming problem

Solving example problem

- This is a linear programming problem
- Solution: Can use the simplex algorithm—see MA 511

Model-based Predictive Control

- Model-based Predictive Control—MPC

Model-based Predictive Control

- Model-based Predictive Control—MPC
- MPC methodology is also referred to as the moving horizon control or the receding horizon control

Model-based Predictive Control

- Model-based Predictive Control—MPC
- MPC methodology is also referred to as the moving horizon control or the receding horizon control
- The idea behind this approach can be explained using an example of driving a car

MPC—analogy with driving a car

- The driver looks at the road ahead of him and taking into account the present state and the previous action predicts his action up to some distance ahead, which we refer to as the prediction horizon

MPC—analogy with driving a car

- The driver looks at the road ahead of him and taking into account the present state and the previous action predicts his action up to some distance ahead, which we refer to as the prediction horizon
- Based on the prediction, the driver adjusts the driving direction

MPC illustration

The driver predicts future travel direction based on the current state of the car and the current position of the steering wheel

Basic Structure of MPC

Hypothalamic-pituitary-adrenal axis

- The hypothalamic-pituitary-adrenal—HPA

Hypothalamic-pituitary-adrenal axis

- The hypothalamic-pituitary-adrenal—HPA
- The HPA axis is a set of interactions between the hypothalamus (a part of the brain), the pituitary gland (also part of the brain) and the adrenal or suprarenal glands (at the top of each kidney)

Biology of the HPA axis

HPA axis

- The HPA axis helps regulate our temperature, digestion, immune system, mood, sexuality and energy usage

HPA axis

- The HPA axis helps regulate our temperature, digestion, immune system, mood, sexuality and energy usage
- It is also a major part of the system that controls our reaction to stress, trauma and injury

HPA axis therapeutic correction

- A problem related to human health—how optimization can be used to find a therapeutic strategy

HPA axis therapeutic correction

- A problem related to human health—how optimization can be used to find a therapeutic strategy
-

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC261

Computational Aspects

- Math is powerful but it is even more powerful when aided with computational tools

Computational Aspects

- Math is powerful but it is even more powerful when aided with computational tools
- MATLAB

Computational Aspects

- Math is powerful but it is even more powerful when aided with computational tools
- MATLAB
- MATHEMATICA

Math and Soccer?

- http://www.bbc.co.uk/news/science-environment-11153466

Conclusions

- Math is powerful

Conclusions

- Math is powerful
- Can do cool things using math

Conclusions

- Math is powerful
- Can do cool things using math
- Need to consider the moral consequences of what we do!

