Textbook: Thomas, Weir, Hass, Thomas' Calculus, Early Transcendentals, 12th edition (2010)
Course Webpage: http://www.math.purdue.edu/MA173
Supplementary Problems are available on the course webpage. These problems are mandatory, not optional.

NOTE: Your instructor may make changes to these assignments, so please check with your instructor to be sure that you do the correct problems at the correct time.

Lesson	Read	Solve
1	- In $\S 1.5$, read from the beginning to p. 38 (skip "Exponential growth and decay"). - In §3.5, read the table on p. 158. - Read §3.6.	$\begin{aligned} & -\S 1.5, \text { p. } 39 \# 4,14,15 \\ & -\S 3.6, \text { p. } 167 \# 35,45,49,50,52,57,63 . \\ & \text { Note }^{1} \end{aligned}$
2	- In $\S 1.6$, read from the beginning to the end of Example 5. - In §3.8, read from the beginning of the section to the end of Example 3.	$\begin{aligned} & \text { - §1.6, p. } 51 \text { \# 39(d), 43(c), 51; } \\ & \text { - §3.6, p. } 168 \text { \# 62, 66, 74, 87(e); } \\ & \text { - §3.8, p. } 184 \text { \# 29, 32, } 40 . \end{aligned}$
3	- In §5.1, read pp.297-301.	$\begin{aligned} & - \text { §1.6, p. } 51 \text { \# 41(c), 53(b), 57; } \\ & \text { - §3.6, p. } 168 \text { \# 78, 88(deg); } \\ & - \text { §5.1, p. } 305 \text { \# 9(b), 11(b), 12(a) } \end{aligned}$
4	- In $\S 5.2$, read from the beginning of the section to the end of Example 2.	$\begin{aligned} & \hline \text { - §3.6, p. } 168 \text { \# 89, 90; } \\ & \text { - §5.1, p. } 305 \text { \# 10(b), } 12(\mathrm{~b}) ; \\ & \text { - §5.2, p. } 312 \text { \# 1, 2, } 9^{2}, 10^{2} \end{aligned}$
5	- In §5.3, read the bottom of p. 314 and items $1-5$ in the table on p. 317 . - In §5.4, read "Fundamental Theorem, Part 1" on pp.326-327.	$\begin{aligned} & -\S 5.2, \text { p. } 313^{3} \# 11,12 ; \\ & -\S 5.3, \text { p. } 322 \text { \# } 10^{4} ; \\ & - \text { Supplementary Problems: A. } \end{aligned}$
6	- In §5.4, read from the bottom of p. 328 to the end of the section.	$\begin{aligned} & -\S 5.3, \text { p. } 322 \# 13(\mathrm{~b}), 14(\mathrm{a}) \text {; } \\ & -\S 5.4, \text { p. } 333 \# 20,23,39(\mathrm{ab})^{5}, 40(\mathrm{ab})^{5}, 57, \\ & 58 . \end{aligned}$
7	- Read $\S 5.5$, but skip Examples 6 and 10.	$\begin{aligned} & \text { - } \S 5.4, \text { p. } 334 \text { \# 59, 83(abc); } \\ & \text { - §5.5, p. } 343 \text { \# 6, 20, 24, 29, 36, 40; } \\ & \text { - Supplementary Problems: B. } \end{aligned}$
8	- Read §5.6.	$\begin{aligned} & \text { - §5.4, p. } 335 \text { \# 83(de); } \\ & \text { - §5.5, p. } 343 \# 55,71^{6} ; \\ & \text { - §5.6, p. } 350 \text { \# 16, 17, 237}, 57,58,59,60, \\ & 64 . \end{aligned}$

[^0]| Lesson | Read | Solve |
| :---: | :---: | :---: |
| 9 | - In §6.1, read from p. 366 to the end of Example 8 . | $\begin{aligned} & - \text { §5.5, p. } 343 \# 77,78 ; \\ & -\S 5.6, \text { p. } 350 \# 25,28,66,67,112^{8} ; \\ & - \text { §6.1, p. } 372 \# 15,22,29,30 . \\ & \hline \end{aligned}$ |
| 10 | - In §6.1, read from the beginning of the section to the end of Example 1, and also from p. 369 to the end of the section. | $\begin{aligned} & \text { - §5.6, p.350 \# 32, 36; } \\ & \text { - §5.6, p.353 \# 113(b) } \\ & \text { - §6.1, p. } 372 \text { \# } 37,41,42,44,51(\mathrm{ad}), 52(\mathrm{a}) \text {, } \\ & \text { 53(c). } \end{aligned}$ |
| 11 | - Read §6.2, but skip Example 3. | - §6.2, p.379 \# 1, 2, 5, 6, 7, 9, 10, 11. |
| 12 | - In §6.3, read to the end of Example 4. | $\begin{aligned} & -\S 6.2, \text { p. } 380 \# 29(a b)^{10}, 40 ; \\ & -\S 6.3, \text { p. } 386 \# 1,2,10,15,17,22 . \end{aligned}$ |
| 13 | - Read $\S 6.5$ to the end of Example 5, skip Example 2. | $\begin{aligned} & -\S 6.3, \text { p. } 386 \# 16,21 \text {; } \\ & -\S 6.5, \text { p. } 398 \text { \# 1, 2(ab), } 7,8,11,13(a), \\ & 14(\mathrm{a}) . \end{aligned}$ |
| 14 | - Read $\S 7.2$, but skip separable differential equations.
 - Optional reading in §7.1: from the beginning of the section to the middle of p. 419 | $\begin{aligned} & -\S 6.5, \text { p. } 399 \# 12,19,21,22 ; \\ & -\S 7.2, \text { p. } 434 \# 25,26,30,35 . \end{aligned}$ |
| 15 | - In $\S 4.5$, read to the end of Example 8. | $\begin{aligned} & -\S 4.5, \text { p. } 261 \text { \# 14, 16, 19, 24, 25, 43, 45, 46; } \\ & -\S 7.2, \text { p. } 434 \text { \# 27, } 36 . \end{aligned}$ |
| 16 | - In $\S 7.4$, read from the beginning of the section to the end of Example 1.
 - In §1.6, reread pp.40-43. | $\begin{aligned} & -\S 1.6, \text { p. } 51 \text { \# 19, 22; } \\ & \text { - §4.5, p. } 261 \text { \# 21, 23, 76; } \\ & - \text { §7.4, p. } 448 \text { \# 2(afh), 5(e), } 7^{11} . \end{aligned}$ |
| 17 | - In $\S 1.6$, read from the bottom of p. 46 to the end of the section (but only read about the inverse sine, ignore the inverse cosine). - In §3.8, read from the beginning of the section to the end of Example 2. | $\begin{aligned} & \text { §1.6, p. } 52 \text { \# 65(abc), 68(ab); } \\ & \text { §3.8, p. } 184 \# 7,8,9,10 ; \\ & \text { §7.4, p. } 448 \text { \# 8 }{ }^{11} \text {. } \end{aligned}$ |
| 18 | - Read $\S 3.9$ (but only read about the inverse sine and inverse tangent, IGNORE the inverse cosine, inverse cotangent, inverse secant, and inverse cosecant). | $\begin{aligned} & \text { - §3.9, p. } 191 \text { \# 9, 10, 12, 30, 34, 41; } \\ & \text { - Supplementary Problems: C. } \end{aligned}$ |
| 19 | - In §8.1, read pp.454-457. Also overview p. 453. | $\begin{aligned} & -\S 8.1, \text { p. } 459^{12} \# 3,5,6,11,12,13,14,20, \\ & 22,23 . \end{aligned}$ |
| 20 | - Read §8.2, (but skip Example 4). | $\begin{aligned} & -\S 8.1, \text { p. } 460 \# 10,29 ; \\ & -\S 8.2, \text { p. } 466 \text { \# 8, 17, 20, 22, 41, 45; } \\ & - \text { Supplementary Problems: D. } \end{aligned}$ |

[^1]| Lesson | Read | Solve |
| :---: | :---: | :---: |
| 21 | - Read §8.3. | $\begin{aligned} & \hline \text { - §8.1, p. } 459 \# 25 ; \\ & \text { - §8.2, p. } 466 \# 46 ; \\ & \text { - §8.3, p. } 470^{13} \# 2,7,8,10,17,18,23,24 \end{aligned}$ |
| 22 | - In §8.4, read Examples 1, 9, 2, 3, 6, 7 (in that order). | $\begin{aligned} & \text { - §8.3, p. } 470 \text { \# 12, 26; } \\ & \text { - §8.4, p. } 479 \text { \# 11, 12, 15, 16, 17, 20, } 34 . \end{aligned}$ |
| 23 | - In §8.7, read from the beginning of the section to the end of Example 3. | - §8.3, p. 470 \# 25, 30;
 - §8.4, p. 479 \# 10, 36;
 - §8.7, p. 505 \# 11, 12, 13, 17;
 - Supplementary Problems: E. |
| 24 | - In $\S 10.1$, read from the beginning of the section to the top of p .552 , and from the bottom of p. 553 to the end of Example 6. | $\begin{aligned} & \text { - §8.4, p. } 479 \text { \# 14; } \\ & \text { - §8.7, p. } 505 \# 2 \text {; } \\ & \text { - §10.1, p. } 559 \text { \# 4, 16, 20, 31, 32, 37, 39, } \\ & \text { 41. } \end{aligned}$ |
| 25 | - In $\S 10.2$, read from the beginning of the section to the end of Example 4. Also read Examples 8, 9, 10 . | $\begin{aligned} & -\S 10.1, \text { p. } 559 \# 38,42,45,51 ; \\ & -\S 10.2, \text { p. } 569 \# 2,8,9,19,20,51 . \end{aligned}$ |
| 26 | - In $\S 10.3$, read to the end of Example 4 (including the proof of Theorem 9). | $\begin{aligned} & \text { - §10.1, p. } 559^{14} \# 46,52,60 ; \\ & \text { - §10.2, p. } 569 \# 14,55,90 ; \\ & \text { - Supplementary Problems: F. } \end{aligned}$ |
| 27 | - In §10.4, read to the end of Example 2(b). | $\begin{aligned} & \text { - §10.2, p. } 570 \text { \# } 93 ; \\ & \text { - §10.4, p. } 580 \text { \# 18, 22, 23, } 26,33 . \end{aligned}$ |
| 28 | - In $\S 10.5$, read from the beginning of the section to the end of Example 1. | $\begin{aligned} & -\S 10.4, \text { p. } 580 \# 24,34 ; \\ & -\S 10.5, \text { p. } 585 \# 18,19,20,21,33,34,37 . \end{aligned}$ |
| 29 | - In §10.6, read from the beginning of the section to the end of Example 5; you may skip Example 2. | $\begin{aligned} & -\S 10.6, \text { p. } 591 \# 2,4,10,15,17,19,23,27, \\ & 49,51 . \end{aligned}$ |
| 30 | - In $\S 10.7$, read from the beginning of the section to the end of Example 3 (but ignore the discussions of convergence at the endpoints of the interval of convergence). | $\begin{aligned} & -\S 10.7, \text { p. } 600^{15} \# 6,7,11,13,19 \\ & -\S 10.8, \text { p. } 606^{14,16} \# 11,13,15 . \end{aligned}$ |
| 31 | - In $\S 10.8$, read from the beginning of the section to the end of Example 3.
 - In $\S 10.9$, read Example 4 and the paragraph before Example 5. | $\begin{aligned} & -\S 10.7, \text { p. } 600^{15} \# 3,8,12,28 ; \\ & -\S 10.8, \text { p. } 606 \# 3,7,27,29 ; \\ & -\S 10.9, \text { p. } 613 \# 12,15 . \end{aligned}$ |

[^2]| Lesson | Read | Solve |
| :---: | :---: | :---: |
| 32 | - In $\S 10.10$, read Examples 5 and 6 on pp.618-619.
 - In Appendix A. 7 read from the middle of p.AP-27 to the middle of p.AP-30. | $\begin{aligned} & \hline- \text { §10.7, p. } 600 \text { \# 27; } \\ & \text { - §10.8, p. } 606 \text { \# 24; } \\ & \text { - §10.9, p. } 613 \# 14,16 ; \\ & \text { - §10.10, p. } 621^{17} \# 29,30,37 ; \\ & - \text { §A.7, p.AP-34 \# 2(ab). } \end{aligned}$ |
| 33 | - In §10.10, read about "Euler's identity" from the bottom of p. 619 to the end of the section.
 - In Appendix A.7, read from the middle of p.AP-30 to the end of Example 3. | $\begin{aligned} & \text { - §10.10, p. } 621 \text { \# } 32^{17}, 67(\mathrm{abc}), 68,72 ; \\ & -\S \text { A. } 7, \text { p.AP- } 34 \# 2(\mathrm{c}), 11,13 . \end{aligned}$ |
| 34 | - In $\S 11.1$, read from the beginning of the section to the end of Example 8. (The rest of the section is optional). | $\begin{aligned} & -\S 11.1, \text { p. } 634 \# 2,6,16,8,20(\mathrm{a})^{18}, 22 ; \\ & -\S \text { A. } 7 \text {, p.AP- } 34^{19} \# 12,14 . \end{aligned}$ |
| 35 | - In §11.2 read to the end of Example 5, but skip the second derivatives. | $\begin{aligned} & - \text { §11.1, p. } 634 \# 14,23 ; \\ & \text { - §11.2, p. } 643 \# 4^{20}, 8^{20}, 21,26 . \end{aligned}$ |
| 36 | - Read §11.3. | $\begin{aligned} & - \text { §11.2, p. } 643 \text { \# 29, 30; } \\ & \text { - §11.3, p. } 648 \text { \# 2, 6(deh), 16, 36, 38, } 39 . \end{aligned}$ |
| 37 | - Read §11.4, but ignore the statements about symmetry. | $\begin{aligned} & - \text { §11.2, p. } 643 \# 22,27 ; \\ & \text { - §11.3, p. } 649 \# 49,50 ; \\ & \text { - §11.4, p. } 652 \# 4^{21}, 6^{21}, 18,19,28 . \end{aligned}$ |
| 38 | - Read §11.5. | $\begin{aligned} & \text { - §11.4, p. } 652 \# 10,12,20 ; \\ & \text { - §11.5, p. } 656 \# 4,5,19,25 ; \\ & \text { - Ch.11 Practice Exer., p. } 674 \text { \# 48, } 53 . \end{aligned}$ |
| 39 | - In §11.6, review the equations for parabolas, ellipses and hyperbolas. You will not need to know about the focus and directrix of a parabola, or about the foci of an ellipse or hyperbola. | $\begin{aligned} & -\S 11.5, \text { p. } 656 \# 9,28 ; \\ & -\S 11.6, \text { p. } 663^{22} \# 5,6,20,22,28,30 . \end{aligned}$ |

[^3]
[^0]: ${ }^{1}$ You have to show your work to get full credit, but for this and the next assignment it's OK to do the problems in one step.
 ${ }^{2}$ Explain why your answer is right.
 ${ }^{3}$ Write each of these sums in Σ notation in three different ways; see Problem 7 on p. 312 for a hint.
 ${ }^{4}$ The instruction for this problem begins with "Suppose that f and h are integrable." You can ignore this phrase, here and everywhere else in this course.
 ${ }^{5}$ See Example 2(c) for a hint.
 ${ }^{6}$ See Example 5 on p. 282.
 ${ }^{7}$ See Example 9 on p.341.

[^1]: ${ }^{8}$ Substitute $u=1-x$.
 ${ }^{9}$ Substitute $u=-x$.
 ${ }^{10}$ Revolve around the y-axis only.
 ${ }^{11}$ Be sure to justify your answer.
 ${ }^{12}$ Do not use integral tables for any of these problems.

[^2]: ${ }^{13}$ Do not use integral tables for these but you may use the formula for the integral of $\sec x$ on the p.453.
 ${ }^{14}$ Explain your answers.
 ${ }^{15}$ Just do part (a), that is, just give the radius and open interval of convergence.
 ${ }^{16}$ This lesson has some homework from $\S 10.8$, but you don't need to read $\S 10.8$ to do these problems.

[^3]: ${ }^{17}$ Use power series for these, not l'Hôpital's rule; see Examples 5 and 6.
 ${ }^{18}$ See the solution of \#19(a).
 ${ }^{19}$ Do not draw Argand diagrams.
 ${ }^{20}$ Only find the equation for the tangent line, don't find the second derivative.
 ${ }^{21}$ Just draw the graph, don't discuss symmetry.
 ${ }^{22}$ In the last four problems, just give the sketches, and include the asymptotes for the hyperbolas. You do not have to include the foci.

