Lesson 39 Sections 7.6 and 8.1
 Solving Radical Equations
 Using the Principle of Square Roots to Solve an Equation

$x=3$
You know you can add, subtract, multiply, or divide (by nonnegative number) and get a true equation. Let's see if both sides can be raised to the same power. Square both sides of the equation above.
$x^{2}=9$
Is $\boldsymbol{x}=\mathbf{3}$ still a solution? Yes. However, -3 could also be a solution of the squared equation. So raising both sides to the same power results in an equation with a solution of the original equation. However, sometimes there may also be solutions that are not solutions of the original equation.

Power Rule: If $a=b$, then $a^{2}=b^{2}$ has the same solution as the original equation. However, the squared equation may also have 'extra' solutions that are not solutions of the original equation. Therefore, all solutions of a squared equation must be checked in the original equation.

Solve the following equations. Check all solutions.
16) $\sqrt{3 x-2}=6$

Before squaring, the radical must be isolated.

$$
\sqrt{x}-2=5
$$

$$
\sqrt{a-1}-5=-7
$$

19) $\sqrt{x-2}-7=-4$
20) $\frac{\sqrt{2 x}-1}{-2}=-1$

$$
\sqrt{4 x+13}=x+2
$$

A Quadratic Equation is any equation that can be written in the form $a x^{2}+b x+c=0$.
You have already learned one way to solve a quadratic equation, using factoring as in the following example.

$$
\begin{aligned}
& 3 x^{2}-2=5 x \\
& 3 x^{2}-5 x-2=0 \\
& (3 x+1)(x-2)=0 \\
& \\
& 3 x+1=0 \quad \text { or }
\end{aligned} \quad x-2=0, \begin{array}{ll}
3 x=-1 & x=2 \\
x=-\frac{1}{3} &
\end{array}
$$

You will now learn another way to solve a quadratic equation. In lesson 40, you will learn a third way to solve quadratic equations.

Using the Principle of Square Roots

Principle of Square Roots:

For any real number k, if $x^{2}=k$ then $x=\sqrt{k}$ or $x=-\sqrt{k}$.
Use the principle of square roots to solve these two quadratic equations.

1) $x^{2}=9$
2) $3 y^{2}-2=0$

The principle of square roots can be generalized. $Q=$ a quantity

$$
\text { If } Q^{2}=k \text { then } \mathrm{Q}=\sqrt{k} \text { or } \mathrm{Q}=-\sqrt{k}
$$

3) $(x+3)^{2}=36$
4) $(n+2)^{2}=12$
5) If $f(x)=(2 x-1)^{2}$, find any values of x such that $f(x)=11$.
