Lesson 39 Sections 7.6 and 8.1 Solving Radical Equations Using the Principle of Square Roots to Solve an Equation

x = 3

You know you can add, subtract, multiply, or divide (by nonnegative number) and get a true equation. Let's see if both sides can be raised to the same power. Square both sides of the equation above.

 $x^2 = 9$

Is x = 3 still a solution? Yes. However, -3 could also be a solution of the squared equation. So raising both sides to the same power results in an equation with a solution of the original equation. However, sometimes there may also be solutions that are not solutions of the original equation.

Power Rule: If a = b, then $a^2 = b^2$ has the same solution as the original equation. However, the squared equation may also have 'extra' solutions that are not solutions of the original equation. Therefore, all solutions of a squared equation must be checked in the original equation.

Solve the following equations. Check all solutions.

$$16) \qquad \sqrt{3x-2} = 6$$

Before squaring, the radical must be isolated.

 $17) \qquad \sqrt{x} - 2 = 5$

18)
$$\sqrt{a-1} - 5 = -7$$

$$19) \qquad \sqrt{x-2} - 7 = -4$$

20)
$$\frac{\sqrt{2x}-1}{-2} = -1$$

21)
$$\sqrt{4x+13} = x+2$$

A Quadratic Equation is any equation that can be written in the form $ax^2 + bx + c = 0$.

You have already learned one way to solve a quadratic equation, using factoring as in the following example.

$$3x^{2}-2=5x$$

$$3x^{2}-5x-2=0$$

$$(3x+1)(x-2)=0$$

$$3x+1=0 \text{ or } x-2=0$$

$$3x=-1 \qquad x=2$$

$$x=-\frac{1}{3}$$

You will now learn another way to solve a quadratic equation. In lesson 40, you will learn a third way to solve quadratic equations.

Using the Principle of Square Roots

Principle of Square Roots:

For any real number k, if $x^2 = k$ then $x = \sqrt{k}$ or $x = -\sqrt{k}$.

Use the principle of square roots to solve these two quadratic equations. 1) $x^2 = 9$

2)
$$3y^2 - 2 = 0$$

The principle of square roots can be generalized. Q = a quantity

If
$$Q^2 = k$$
 then $Q = \sqrt{k}$ or $Q = -\sqrt{k}$

3)
$$(x+3)^2 = 36$$

4)
$$(n+2)^2 = 12$$

5) If $f(x) = (2x-1)^2$, find any values of x such that f(x) = 11.