MA 22000 Lesson 21 Notes

How would a person solve an equation with a variable in an exponent, such as $2^{(x-5)}=9$? (We cannot re-write this equation easily with the same base.) A notation was developed so that equations such as this one could be solved. This 'new' function is called a logarithm or a logarithmic function.

Definition of a logarithm or logarithmic function:

Let $a>0, a \neq 1$, and $x>0$ (a any positive number other than 1 and x any positive number), then the logarithm y and the logarithmic function is defined as
$f(x)=y=\log _{a} x$ and is equivalent to $a^{y}=x$.

**It is important to understand that a logarithm is an exponent! ${ }^{* *}$

Ex 1: Write each exponential expression as a logarithmic expression.
a) $4^{2}=16$
b) $m^{-5}=q$
c) $\left(\frac{2}{3}\right)^{n}=\frac{8}{27}$
d) $10^{5}=a$
e) $e^{(x-2)}=8$
f) $n^{12}=5000$

Ex 2: Write each logarithmic expression as an exponential expression.
a) $\log _{5} 125=3$
b) $\log _{r} 100=3$
c) $\log _{\pi} n=-3$
d) $\log _{\left(\frac{1}{4}\right)} 9=m$
e) $\log _{b} 25=(q+1)$
f) $\log _{0.2} n=-4$

Ex 3: Find each logarithm. (Remember, a logarithm is an exponent!)
a) $\log _{2} 16=$
b) $\log _{5}\left(\frac{1}{5}\right)=$
c) $\log _{10} 10000=$
d) $\log _{3}(-81)=$
e) $\log _{4} 64=$
f) $\log _{(1 / 2)} 8=$

Below is a graph of $y=2^{x}$ and its inverse, $x=2^{y}$.

If you imagine the line $y=x$, you can see the symmetry about that line.
Below are both graphs on the same coordinate system along with the line $y=x$.

There is another graph of $f(x)=y=2^{x}$ and the inverse, $f^{-1}(x)=\log _{2} x$ on page 91 (calculus part of textbook). Again, you can see the symmetry about the line $y=x$.

PROPERTIES OF LOGARITHMS: Let x and y be any positive real numbers and r be any real number. Let a be a positive real number other than $1(a \neq 1)$. Then the following properties exist.
a. $\log _{a} x y=\log _{a} x+\log _{a} y$
b. $\log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y$
c. $\log _{a} x^{r}=r \log _{a} x$
d. $\log _{a} a=1$
e. $\log _{a} 1=0$
f. $\log _{a} a^{r}=r$

The properties of logarithms are easy to prove, if you remember that a logarithm is an exponent. Logarithms 'behave' like exponents. When multiplying, exponents are added (property a). When dividing, exponents are subtracted (property b). When a power is raised to another power, the exponents are multiplied (property c). Any real number to the first power is itself (property d). Any real number to the zero power is 1 (property e). To prove property f, just put the logarithmic expression in exponential form.

Ex 4: Use the properties of logarithms to write the expression as a sum, difference, or product of simpler logarithms.
a) $\quad \log _{2}(5 \sqrt{x})$
b) $\quad \log _{b}\left(\frac{2 x}{y z^{2}}\right)$
c) $\quad \log _{5}\left(\frac{1}{625 x^{3} y^{2}}\right)$

Ex 5: Suppose $\log _{a} 3=m, \log _{a} 4=n$, and $\log _{a} 5=r$. Use the properties of logarithms to find the following.
a) $\quad \log _{a} 12$
b) $\quad \log _{a} \frac{25}{3}$
c) $\quad \log _{a} 48 a^{2}$

Your scientific 1-line calculator will find logarithm using base 10 (common logarithms) or base e (natural logarithms). If a logarithm is written $\log x$ (with no base indicated), it is assumed to be a common logarithm, or base 10 logarithm. If a logarithm is written $\ln x$, it is assumed to be a natural logarithm (base e logarithm). Use your calculator to approximate each of the following to 4 decimal places.
a) $\ln 22$
b) $\quad \log 49$
c) $\quad \ln 0.052$
d) $\quad \log 3.2$

Change of base Theorem for Logarithms:

If x is any positive number and if a and b are positive real numbers, $a \neq 1, b \neq 1$, then

$$
\log _{a} x=\frac{\log _{b} x}{\log _{b} a}
$$

Most often, base b is chosen to be 10 or e, if a calculator will be used to approximate.

$$
\log _{a} x=\frac{\log x}{\log a} \text { or } \log _{a} x=\frac{\ln x}{\ln a}
$$

Ex 6: Use natural logarithms to evaluate the logarithm. Give an exact answer and an approximation to the nearest thousandth.
a) $\quad \log _{4} 20$
b) $\quad \log _{\left(\frac{1}{3}\right)} 0.5$
c) $\quad \log _{19}(0.03)$
d) $\log _{1.2} 5$

Solving some simple logarithmic equations:

Ex 7: Solve each equation.
a) $\log _{x} 64=6$
b) $\log _{x} 27=-3$
c) $\quad \log _{8}\left(\frac{1}{64}\right)=x$
d) $\log _{3}(2 x-5)=2$
e) $\quad \log (x+5)+\log (x+2)=1$

Solving some simple exponential equations:

Ex 8: Solve each equation by using natural logarithms. Approximate to four decimal points, if needed.
a) $6^{x}=15$
b) $e^{k-2}=4$
c) $4^{2 x+3}=6^{x-1}$

Applied problems:

Ex 9: Leigh plans to invest $\$ 1000$ into an account. Find the interest rate that is needed for the money to grow to $\$ 1500$ in 8 years if the interest is compounded continuously.

Ex 10: The magnitude of an earthquake, measured on the Richter scale, is given by $R(I)=\log \left(\frac{I}{I_{0}}\right)$ where I is the amplitude registered on a seismograph located 100 km from the epicenter of the earthquake and I_{0} is the amplitude of a certain small size earthquake. Find the Richter scale rating of a earthquake with the following amplitude. (Round to the nearest tenth.)
$25000 I_{0}$

