Student's Name: \qquad

Student's ID Number:

MA 16010 Sections:
9:50-10:50am Section 0002
11:00am-noon Section 0001

Instructions:

1. Do NOT turn the page until told to do so.
2. Fill in your name and student ID in the space provided above.
3. On the scantron, fill in your name, section number, student ID. Leave the test/quiz number blank. Sign your name.
4. There are 12 problems and a total of 7 pages (including this cover page). The maximum possible score for this exam is 100 , and each problem is worth the same points.
5. You can use the available space below a question or at the back of each page for your work. Turn in BOTH the scantron and the exam when you leave. Note: you will be graded ONLY based on your scantron answer sheet.
6. Only a one-line display scientific calculator is allowed. NO other electronic devices are allowed. No books or notes are allowed.
7. You will have 60 minutes to complete the exam.
8. Keep your eyes on your own exam please. Try to cover your bubbled-in scantron answers.
9. Good luck!
10. If $h(t)=\sin (3 t)+\cos (3 t)$, find $h^{(3)}(t)$.
A. $\sin (3 t)-\cos (3 t)$
B. $\sin (3 t)+\cos (3 t)$
C. $27 \sin (3 t)-27 \cos (3 t)$
D. $27 \sin (3 t)+27 \cos (3 t)$
E. $-27 \sin (3 t)+27 \cos (3 t)$
11. Given $f(x)=\frac{2\left(3-x^{2}\right)}{\sqrt{3 x^{2}+1}}$. Find $f^{\prime}(1)$.
A. $-\frac{7}{2}$
B. $-\frac{9}{4}$
C. $-\frac{1}{2}$
D. $-\frac{13}{6}$
E. $-\frac{3}{4}$
12. A spherical balloon is inflated with gas at a rate of 5 cubic centimeters per minute. How fast is the radius of the balloon changing at the instant the radius is 4 centimeters? The volume V of a sphere with a radius r is $V=\frac{4}{3} \pi r^{3}$.
A. $\frac{5}{64 \pi}$ centimeters per minute
B. $\frac{25}{4 \pi}$ centimeters per minute
C. $\frac{5}{16 \pi}$ centimeters per minute
D. $\frac{256 \pi}{3}$ centimeters per minute
E. $\frac{5}{4 \pi}$ centimeters per minute
13. A toy rocket is launched from a platform on earth and flies straight up into the air. Its height after launch is given by:

$$
s(t)=t^{3}+3 t^{2}+4 t+16
$$

where s is measured in meters, and t is in seconds. Find the velocity when the acceleration is $18 \mathrm{~m} / \mathrm{s}^{2}$.
A. $2 \mathrm{~m} / \mathrm{s}$
B. $44 \mathrm{~m} / \mathrm{s}$
C. $16 \mathrm{~m} / \mathrm{s}$
D. $28 \mathrm{~m} / \mathrm{s}$
E. $13 \mathrm{~m} / \mathrm{s}$

MA 16010 - Exam 2

5. According to a joint study conducted by Oxnard's Environmental Management Department and a state government agency, the concentration of CO in the air due to automobile exhaust t yr from now is given by

$$
C(t)=10\left(0.2 t^{2}+4 t+64\right)^{\frac{2}{3}}
$$

parts per billion. Find the rate at which the level of CO is changing 20 years from now. Round your answer to the nearest integer.
A. 9 parts per billion per year
B. 11 parts per billion per year
C. 13 parts per billion per year
D. 19 parts per billion per year
E. 25 parts per billion per year
6. Find $\frac{d y}{d x}$ by implicit differentiation.

$$
\ln (x y)+2 x=e^{y}
$$

A. $\frac{d y}{d x}=\frac{-2-y}{x-e^{y}}$
B. $\frac{d y}{d x}=\frac{-2 y}{1-y e^{y}}$
C. $\frac{d y}{d x}=y e^{y}-\frac{y}{x}-2 y$
D. $\frac{d y}{d x}=\frac{1+2 x y}{x y e^{y}}$
E. $\frac{d y}{d x}=\frac{-2 x y-y}{x-x y e^{y}}$
7. An airplane flies at an altitude of $y=2$ miles towards a point directly over an observer (see figure). The speed of the plane is 500 miles per hour. Find the rate at which the angle of elevation θ is changing when the angle is 60°.

A. $\frac{75}{4}^{\circ} /$ hour
B. $\frac{225^{\circ}}{8} /$ hour
C. $\frac{125 \sqrt{3}}{2}$ /hour
D. $\frac{375^{\circ}}{2} /$ hour
E. $50 \sqrt{3}$ ºur
8. Find the critical numbers of $y=x^{2} e^{x}$.
A. $x=-2,1$
B. $x=0,2$
C. $x=0,1$
D. $x=-2,2$
E. $x=-2,0$

MA 16010 - Exam 2

9. Given the function

$$
f(x)=\frac{8 x}{x^{2}+4},
$$

and its derivative,

$$
f^{\prime}(x)=\frac{-8 x^{2}+32}{\left(x^{2}+4\right)^{2}}
$$

The y values of the absolute maximum and the absolute minimum of $f(x)$ over the closed interval $[-1,4]$ are respectively:
A. $\frac{8}{5}$ and $-\frac{8}{5}$
B. $-\frac{8}{5}$ and -2
C. 2 and $-\frac{8}{5}$
D. $\frac{8}{5}$ and -2
E. 2 and -2
10. Find the open interval where $g(t)$ is increasing.

$$
g(t)=-\frac{1}{3} t^{3}+\frac{3}{2} t^{2}
$$

A. $(-\infty, 0)$
B. $(0,3)$
C. $(3, \infty)$
D. $(-\infty, 3)$
E. $(0, \infty)$
11. The graph of the first derivative of a function $f(x)$ is shown below. Which of the following statements are true?

(I) $f(x)$ has 2 critical numbers.
(II) $\mathrm{On}(-\infty,-3), f(x)$ is increasing.
(III) On $(0,3), f(x)$ is decreasing.
(IV) A relative maximum occurs at $x=0$.
A. I and II are true.
B. I and III are true.
C. I and IV are true.
D. II and III are true.
E. III and IV are true.
12. The position function

$$
s(t)=t^{3}-2 t^{2}+t
$$

describes the motion of a particle along a line for $t \geq 0$. Choose the correct statement below.
A. The particle is always moving in a positive direction.
B. The particle is always moving in a negative direction.
C. The particle changes from a negative direction to a positive direction at $t=\frac{1}{3}$.
D. The particle changes from a negative direction to a positive direction at $t=1$.
E. The particle changes from a negative direction to a positive direction at $t=3$.

