Select the correct response.

1. If $f(x)=-x^{2}-3 x+4$, calculate $f(-2)$.
A. -6
B. 0
C. 2
D. 6
E. 14
2. If $f(x)=2 x^{2}-x+1$, find and simplify $f(x+2)$.
A. $2 x^{2}-x+3$
B. $2 x^{2}+7 x+7$
C. $2 x^{2}-x+7$
D. $2 x^{2}+7 x+11$
E. $2 x^{2}-x+11$
3. Simplify: $(3 x-7)(2 x+4)-4(x-3)$
A. $6 x^{2}-11 x-16$
B. $6 x^{2}-6 x-40$
C. $6 x^{2}-4 x-16$
D. $6 x^{2}-11 x-40$
E. $6 x^{2}-6 x-16$
4. At 6 AM a snowplow, traveling at a constant speed, begins to clear a street. At 8 AM a car begins traveling that street from the snowplow's starting point, at a speed of 30 miles per hour. Half an hour later, the car reaches the snowplow. Find the speed of the snowplow.
A. 6 mph
B. 7.5 mph
C. 7.6 mph
D. 12.2 mph
E. 30 mph
5. A box with a square base and no top is to be made from a square piece of tin by cutting out a 3 -inch square from each corner and folding up the sides. If the box must hold 48 in^{3}, which equation can be used to find the length of the side of the piece of tin? $X=$ each side length of the square piece of tin.
A. $3(x-3)(x-3)=48$
B. $x(x-3(x-3)=48$
C. $3(x-6)(x-6)=48$
D. $x(x-6)(x-3)=48$
E. $3(x-6)(x-3)=48$
6. Find the slope of the line containing the points $(-2,4)$ and $(6,-3)$.
A. 4
B. $-\frac{7}{8}$
C. $\frac{1}{4}$
D. $-\frac{8}{7}$
E. $-\frac{1}{2}$
7. Suppose 280 tons of corn were harvested in 5 days and 940 tons in 20 days. If the relationship between tons T and days d is linear, express T as a function of d.
A. $T(d)=5 d+280$
B. $T(d)=-44 d+500$
C. $T(d)=60 d+280$
D. $T(d)=60 d+44$
E. $T(d)=44 d+60$
8. If $f(x)=\sqrt{x+1}$ and $g(x)=x^{2}+7$, then $(f \circ g)(-1)=$?
A. 3
B. $\sqrt{7}$
C. 0
D. 7
E. $\sqrt{3}$
9. $\lim _{x \rightarrow 1} \frac{x^{2}+4 x-5}{x^{2}-1}=$
A. -3
B. 0
C. 3
D. 5
E. Limit does not exist.
10. $\lim _{x \rightarrow \infty} \frac{x^{3}-x^{2}}{2 x^{2}-3 x+1}=$
A. -1
B. 0
C. $\frac{1}{2}$
D. 1
E. Limit goes toward ∞.
11. $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-3(x+h)-\left(x^{2}-3 x\right)}{h}=$
A. $-4 x+3$
B. 3
C. $-4 x$
D. $2 x-3$
E. -3
12. Find y^{\prime} if $y=9 x^{2}+\frac{1}{4 x^{3}}-\sqrt{x}+1$.
A. $18 x-\frac{3}{4 x^{4}}+\frac{1}{2 x^{3 / 2}}$
B. $18 x-\frac{12}{x^{4}}-\frac{1}{2 x^{1 / 2}}$
C. $18 x-\frac{3}{4 x^{4}}-\frac{1}{2 x^{1 / 2}}$
D. $18 x-\frac{12}{x^{4}}+\frac{1}{2 x^{3 / 2}}$
E. $18 x-\frac{3}{4 x^{2}}-\frac{1}{2 x^{1 / 2}}$
13. The derivative of $(7 x+4)\left(x^{2}-3 x\right)$ is:
A. $21 x^{2}-13 x$
B. $21 x^{2}-34 x-12$
C. $14 x-21$
D. $7 x^{3}-17 x^{2}-12 x$
E. $7 x^{2}+8 x-12$
14. The derivative of $\frac{x^{2}+1}{x+5}$ is:
A. $\frac{x^{2}+10 x-1}{(x+5)^{2}}$
B. $2 x$
C. $\frac{2 x^{2}+10 x}{\left(x^{2}+1\right)^{2}}$
D. $\frac{3 x^{2}+10 x+1}{(x+5)^{2}}$
E. $\frac{-x^{2}-10 x+1}{(x+5)^{2}}$
15. If $y=\left(3-x^{2}\right)^{3}$, then $y^{\prime \prime}=$
A. $-6 x\left(3-x^{2}\right)^{2}$
B. $6\left(3-x^{2}\right)\left(5 x^{2}-3\right)$
C. $6\left(3-x^{2}\right)$
D. $24 x^{2}\left(3-x^{2}\right)$
E. $18\left(x^{2}-1\right)$
16. The line tangent to the graph of $f(x)=x-\frac{1}{x}$ at $x=2$ has slope:
A. $\frac{1}{4}$
B. $\frac{3}{4}$
C. $\frac{3}{2}$
D. 0
E. $\frac{5}{4}$
17. A cost function is given by $C(x)=1000 \sqrt{x^{2}+2}$. Use the marginal cost function to estimate the cost of the $11^{\text {th }}$ unit. Round your answer to the nearest cent.
A. $\$ 499.15$
B. $\$ 99.01$
C. $\$ 10,099.50$
D. $\$ 49.51$
E. $\$ 990.15$
18. Suppose the distance (in feet) covered by a car moving along a straight road t seconds after starting from rest is given by the function $f(t)=2 t^{2}(0 \leq \mathrm{t} \leq 30)$. Find the average velocity of the car over the time interval [22, 22.1].
A. $88.2 \mathrm{ft} / \mathrm{sec}$
B. $88.4 \mathrm{ft} / \mathrm{sec}$
C. $88.6 \mathrm{ft} / \mathrm{sec}$
D. $95.2 \mathrm{ft} / \mathrm{sec}$
E. $97.7 \mathrm{ft} / \mathrm{sec}$
19. Find all values of x for which the function $f(x)=2 x^{3}-3 x^{2}-12 x+12$ is increasing.
A. $(-1,2)$
B. $(-\infty,-1)$
C. $(2, \infty)$
D. $(-\infty,-1) \cup(2, \infty)$
E. $(-1,2) \cup(2, \infty)$
20. For what value of a does the function $f(x)=x^{2}+a x$ have a relative minimum at $x=1$?
A. -2
B. 0
C. 2
D. -1
E. 1
21. If the concentration $C(t)$ of a certain drug remaining in the bloodstream t minutes after it is injected is given by $C(t)=\frac{t}{5 t^{2}+125}$, then the concentration is a maximum when $t=$?
A. 25 min .
B. 15 min .
C. 5 min .
D. 10 min . E. There is no maximum.
22. If $f(x)=2 x^{4}-6 x^{2}$ then which one of the following is true?
A. $\quad f$ has a relative maximum at $x= \pm \sqrt{\frac{3}{2}}$ and a relative minimum at $x=0$.
B. $\quad f$ has a relative maximum at $x=0$ and a relative minimum at $x= \pm \sqrt{\frac{3}{2}}$.
C. f has a relative maximum at $x=-\sqrt{\frac{3}{2}}$ and a relative minimum at $x=\sqrt{\frac{3}{2}}$.
D. f has a relative maximum at $x=\sqrt{\frac{3}{2}}$ and a relative minimum at $x=-\sqrt{\frac{3}{2}}$.
E. f has no relative maximum points, but has a relative minimum at $x= \pm \sqrt{\frac{3}{2}}$.
23. The derivative of a function f is $f^{\prime}(x)=x^{2}-\frac{8}{x}$. Then at $x=2, f$ has:
A. an inflection point
B. a relative maximum
C. a vertical tangent
D. a vertical asymptote
E. a relative minimum
24. If $f(x)=\frac{1}{3} x^{3}-9 x+2$, then on the interval [0, 4],
A. $\quad f$ has an absolute maximum at $x=3$ and an absolute minimum at $x=0$.
B. $\quad f$ has an absolute maximum at $x=4$ and an absolute minimum at $x=3$.
C. $\quad f$ has an absolute maximum at $x=0$ and an absolute minimum at $x=4$.
D. $\quad f$ has an absolute maximum at $x=0$ and an absolute minimum at $x=3$.
E. $\quad f$ has an absolute maximum at $x=4$ and an absolute minimum at $x=0$.
25. A cost function is given by $C(x)=1000 \sqrt{x^{3}+1}$. Find the marginal cost when $x=2$.
A. $\$ 166.67$
B. $\$ 333.33$
C. $\$ 4000$
D. \$2000
E. $\$ 1000$
26. A display case is in the shape of a rectangular box with a square base and open top. Suppose the volume is 21 cubic feet. If x is the length of one side of the base, what value should x have to minimize the surface area? Round your answer to two decimal places.
A. 2.78 ft .
B. 3.48 ft .
C. 4.58 ft .
D. 48 ft
E. 9.17 ft .
27. A manufacturer determines that in order to sell x units of a product, the price per unit must be $p=1000-x$. The manufacturer also determines that the total cost of producing x units is $C(x)=3000+20 x$. Calculate the maximum profit.
A. $\$ 490$
B. $\$ 121,500$
C. $\$ 237,100$
D. $\$ 23,000$
E. There is no maximum.
28. Find all asymptotes of the function $f(x)=\frac{x-x^{2}}{3 x^{2}-x-4}$.
$A \quad$ vertical: $x=-1, x=\frac{4}{3}$, horizontal: $y=-\frac{1}{3}$
B. vertical: $x=0, x=1$, horizontal: $y=-1, y=\frac{4}{3}$
C. vertical: $x=-1, x=\frac{4}{3}$, horizontal: $y=0$
D. vertical: $x=0, x=1$, horizontal: $y=0$
E. vertical: $x=0, x=1 \quad$ horizontal: $y=-\frac{1}{3}$
29. If $y=e^{x^{2}}$, then $y^{\prime}=$
A. $e^{x^{2}}$
B. $x^{2} e^{x^{2}-1}$
C. $2 x e^{x^{2}-1}$
D. $2 x e^{x^{2}}$
E. $e^{2 x}$
30. If $y=\ln \left(1-x^{2}\right)$ with domain $D=(-1,1)$, then $y^{\prime}=$
A. $\frac{1}{1-x^{2}}$
B. $\frac{2 x}{\sqrt{1-x^{2}}}$
C. $\frac{-2 x}{1-x^{2}}$
D. $\frac{1}{2\left(1-x^{2}\right)}$
E. $\frac{2 x}{1-x^{2}}$
31. A population grows exponentially. In 1960 it was 50,000 and in 1965 it was 100,000 . What was the population in 1970?
A. 200,000
B. 150,000
C. 250,000
D. 300,000
E. 225,000
32. Find $\frac{d y}{d x}$ if $y=x^{2} e^{3 x}$.
A. $x e^{3 x}(x+2)$
B. $3 x^{3} e^{3 x-1}$
C. $6 x e^{3 x}$
D. $5 x^{3} e^{3 x}$
E. $x e^{3 x}(3 x+2)$
33. If $y=\ln \sqrt{1-x^{2}}$ with domain $D=(-1,1)$, then $y^{\prime}=$
A. $\frac{1}{\sqrt{1-x^{2}}}$
B. $\frac{-2 x}{\sqrt{1-x^{2}}}$
C. $\frac{-x}{1-x^{2}}$
D. $\frac{1}{2\left(1-x^{2}\right)}$
E. $\frac{1}{2 \sqrt{1-x^{2}}}$
34. What lump sum of money should be deposited in a money market certificate paying 8.25% annual interest compounded monthly to amount to $\$ 5000$ in 10 years? Round your answer to the nearest dollar.
A. $\$ 2514$
B. $\$ 4669$
C. $\$ 2740$
D. $\$ 2262$
E. $\$ 2197$
35. Simplify completely: $\frac{1-\frac{a}{b}}{\frac{a^{2}}{b^{2}}-1}$
A. $\frac{a b-b^{2}}{a^{2}-b^{2}}$
B. $\frac{b}{a+b}$
C. $\frac{b}{a}$
D. $\frac{-b}{a+b}$
E. None of the above.
36. Which of the following statements is(are) true about the function $f(x)=2^{-x}$? (I have given a coordinate system if you want to graph the function.)
I. The domain of f is $(-\infty, \infty)$.
II. The range of f is $(-\infty, \infty)$.
III. $\quad f(x) \neq 0$
A. I only
B. II only
C. I and III only
D. II and III only
E. I, II, and III
37. A job takes 45 minutes for two people working together. If one person works alone he can do the job in 2 hours. How long will it take the other person working alone to complete the job?
A. $\frac{90}{43}$ hours
B. 1 hour 15 minutes
C. 43 minutes
D. 1 hour
E. 1 hour 12 minutes
38. Which of the following is equivalent to $\log \left(\frac{z^{3}}{x \sqrt{y}}\right)$?
A. $3 \log z-\log x-\frac{1}{2} \log y$
B. $\frac{3}{2} \log (z-x y)$
C. $3 \operatorname{loz}-\log x-2 \log y$
D. $\frac{3}{2} \log (z-x+y)$
E. $3 \log z-\log x+\frac{1}{2} \log y$
39. How many mL of a 50% acid solution should be added to 40 mL of a 20% acid solution to obtain a solution that is 25% acid?
A. 10 mL
B. 8 mL
C. 6 mL
D. 4 mL
E. None of the above.
40. What is the domain of the function $f(x)=\sqrt{3 x-2}+1$?
A. $(-\infty, \infty)$
B. $\left[\frac{3}{2}, \infty\right)$
C. $\left[\frac{2}{3}, \infty\right)$
D. $\left(-\infty, \frac{2}{3}\right]$
E. $[0, \infty)$
41. Which of the following statements is (are) true?

$$
\text { I. } \quad \ln 0=1
$$

II. $\quad 10^{\log 8}=8$
III. $\quad \log _{4} 8=2$
A. I only
B. II only C. III only
D. I, II, and III
E. None are true.
42. Given: $\log _{3} m=8, \log _{3} n=10$, and $\log _{3} p=6$, represent $\log _{3}\left(\frac{\sqrt{m n}}{p^{3}}\right)$.
A. -9
B. $\frac{2 \sqrt{5}}{27}$
C. 22
D. -56
E. -4
43. Find the equation of a line in slope-intercept form which is parallel to the line $2 x-3 y=7$ and contains the point $(4,-1)$.
A. $y=\frac{3}{2} x-7$
B. $y=-\frac{2}{3} x+\frac{5}{2}$
C. $y=\frac{2}{3} x-\frac{11}{3}$
D. $y=\frac{2}{3} x+\frac{14}{3}$
E. None of the above.
44. A truck inters a freeway traveling 40 miles per hour. One hour later a car enters the same freeway traveling 55 miles per hour. After how many miles will the car overtake the truck?
A. $146 \frac{2}{3}$ miles
B. $201 \frac{2}{3}$ miles
C. 120 miles
D. $106 \frac{2}{3}$ miles
E. None of the above.
45. The value of a rare book is increasing linearly. It was worth $\$ 54$ in 1981 and $\$ 62$ in 1983. Which of the following linear equations represent the value v of the book t years after 1980 ?
A. $v=4 t+50$
B. $v=3 t+48$
C. $v=3 t+50$
D. $v=4 t+51$
E. None of the above.
46. The graph below is the graph of which of the following functions?
A. $f(x)=\left(\frac{1}{2}\right)^{x}$
B. $g(x)=2^{x}$
C. $h(x)=-2^{x}$
D. $j(x)=-\left(\frac{1}{2}\right)^{x}$
E. $k(x)=1-2^{x}$

47. If $\log _{x} 2=5$, solve for x. Approximate your answer to four decimal places.
A. 2.2361
B. 1.4142
C. 0.6990
D. 1.1487
E. 0.3010
48. Solve for $p: \quad \frac{4}{2 p-3}+\frac{10}{4 p^{2}-9}=\frac{1}{2 p+3}$
A. $p=-\frac{3}{2}$
B. $p=\frac{5}{6}$
C. $p=-\frac{25}{6}$
D. There is no solution.
E. None of the above.
49. Parents of a newborn baby are given a gift of $\$ 10,000$ and will choose between two options to invest for their child's college fund. Option 1 is to invest the gift in a fund that pays an average annual interest rate of 11% compounded quarterly; option 2 is to invest the gift in a fund that pays an average annual interest rate of 10.75% compounded continuously. Calculate the value of each investment. Assume the investments have terms of 18 years and round your answers to the nearest dollar.
A. Option 1: $\$ 70,517$, Option 2: $\$ 69,240$
B. Option 1: $\$ 67,494$, Option 2: $\$ 72,427$
C. Option 1: $\$ 72,427$, Option 2: $\$ 69,240$
D. Option 1: $\$ 67,494$, Option 2: $\$ 69,240$
E. Option 1: $\$ 69,240$, Option 2: $\$ 70,517$

ANSWERS:

1. D;	2. B ;	3. E;	4. A;	5. C;	6. B;	7. E;
8. A;	9. C ;	10. E;	11. D;	12. C ;	13. B;	14. A;
15. B ;	16. E;	17. E;	18. A;	19. D;	20. A;	21. C
22. B;	23. E;	24. D;	25. D;	26. B;	27. C;	28. A;
29. D;	30. C;	31. A;	32. E;	33. C;	34. E;	35. D
36. C;	37. E;	38. A;	39. B;	40. C;	41. B;	42. A
43. C;	44. A;	45. A;	46. A;	47. D;	48. C;	49. A

