
MA 16500
EXAM 3 INSTRUCTIONS

VERSION 02
November 8, 2016

Your name Your TA’s name

Student ID # Section # and recitation time

1. You must use a #2 pencil on the scantron sheet (answer sheet).

2. Check that the cover of your question booklet is ORANGE and that it has VERSION 02
on the top. Write 02 in the TEST/QUIZ NUMBER boxes and blacken in the appropriate
spaces below.

3. On the scantron sheet, fill in your TA’s name (NOT the lecturer’s name) and the
course number.

4. Fill in your NAME and PURDUE ID NUMBER, and blacken in the appropriate spaces.

5. Fill in the four-digit SECTION NUMBER.

6. Sign the scantron sheet. All the answers should be marked on the scantron sheet.

7. Blacken your choice of the correct answer in the spaces provided for each of the questions
1–12. Do all your work on the question sheets. Show your work on the question sheets.
Although no partial credit will be given, any disputes about grades or grading will be
settled by examining your written work on the question sheets.

8. There are 12 questions, each worth 8 points. The maximum possible score is

8× 12 + 4 (for taking the exam) = 100 points.

9. NO calculators, electronic device, books, or papers are allowed. Use the back of the test
pages for scrap paper.

10. After you finish the exam, turn in BOTH the scantron sheets and the exam booklets.

11. If you finish the exam before 7:25, you may leave the room after turning in the scantron
sheets and the exam booklets. If you don’t finish before 7:25, you should REMAIN SEATED
until your TA comes and collects your scantron sheets and exam booklets.
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Exam Policies

1. Students must take pre-assigned seats and/or follow TAs’ seating instructions.

2. Students may not open the exam until instructed to do so.

3. No student may leave in the first 20 min or in the last 5 min of the exam.

4. Students late for more than 20 min will not be allowed to take the exam; they will
have to contact their lecturer within one day for permission to take a make-up exam.

5. After time is called, the students have to put down all writing instruments and remain
in their seats, while the TAs will collect the scantrons and the exams.

6. Any violation of the above rules may result in score of zero.

Rules Regarding Academic Dishonesty

1. You are not allowed to seek or obtain any kind of help from anyone to answer questions
on the exam. If you have questions, consult only your instructor.

2. You are not allowed to look at the exam of another student. You may not compare
answers with anyone else or consult another student until after you have finished your
exam, handed it in to your instructor and left the room.

3. You may not consult notes, books, calculators. You may not handle cell phones or
cameras, or any electronic devices until after you have finished your exam, handed it
in to your instructor and left the room.

4. Anyone who violates these instructions will have committed an act of academic dis-
honesty. Penalties for academic dishonesty can be very severe and may include an F
in the course. All cases of academic dishonesty will be reported immediately to the
Office of the Dean of Students.

I have read and understand the exam policies and the rules regarding the academic dishonesty
stated above:

STUDENT NAME:

STUDENT SIGNATURE:
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Questions

1. Consider the function f(x) = (x+ 2)6(x− 1)7 on the interval (−∞,∞).

Choose the correct statement from below.

A. The function f takes its local minimum at x = −2 and its local maximum at

x = − 8

13
.

B. The function f takes its local maximum at x = −2 and its local minimum at x = 1.

C. The function f takes its local maximum at x = −2 and its local minimum at

x = − 8

13
. (correct)

D. The function f takes its local maximum at x = −2 and its local minima at x = − 8

13
and x = 1.

E. The function f takes its local minimum at x = − 8
13

, but there is no local maximum.
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2. Compute the following limits

(a) lim
x→∞

x2 − ln
(
2
x

)
3x2 + 2x

.

(b) lim
x→∞

x ·
(
e

1
x − 1

)
.

A. (a)
1

3
(b) 1 (correct)

B. (a)
1

3
(b) 0

C. (a)
1

3
(b) ∞

D. (a) −2

3
(b) 1

E. (a) −2

3
(b) 0
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3. Consider the function f(x) =
x√
x− 4

on the closed interval [5, 12].

Find

(a) the absolute maximum, and

(b) the absolute minimum.

A. (a) 3
√

2 (b) 4

B. (a) 3
√

2 (b) 5

C. (a) 5 (b) 4 (correct)

D. (a) 5 (b) 3
√

2

E. (a) 5 (b) DNE
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4. Consider the function f(x) = x
2
3 on the interval [−1, 1].

Choose the correct statement from below.

A. Since f(1) = f(−1) = 1, by Rolle’s Theorem, there exists c ∈ (−1, 1) such that
f ′(c) = 0.

B. Even though f(1) = f(−1) = 1, there does not exist any value c ∈ (−1, 1) such that
f ′(c) = 0. This gives a counter-example to the Rolle’s Theorem in case when the
function involves a fractional power.

C. Even though f(1) = f(−1) = 1, there does not exist any value c ∈ (−1, 1) such that
f ′(c) = 0. We observe f ′(0) = +∞. In order for the Rolle’s Theorem to hold, the
derivatives at the open interval (−1, 1) have to be all finite numbers, and this is why
the conclusion of the Rolle’s Theiorem fails here.

D. Even though f(1) = f(−1) = 1, there does not exist any value c ∈ (−1, 1) such that
f ′(c) = 0. This is because f is not continuous at x = 0 and it does not contradict
the Rolle’s Theorem.

E. Even though f(1) = f(−1) = 1, there does not exist any value c ∈ (−1, 1) such that
f ′(c) = 0. This is because f is not differentiable at x = 0 and it does not contradict
the Rolle’s Theorem. (correct)
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5. A corollary to the Mean Value Theorem says: if a continuous function f on [a, b] is such
that f ′(x) = 0 for all x over (a, b), then f is constant on [a, b].

We would like to use this corollary to evaluate tan−1(2) + cot−1(2).

Choose the correct statement from below:

A. The value of tan−1(2) is not any of the usual nice angles π
2
, π
3
, π
4
, or π

6
.

The value of cot−1(2) is not, either.

Therefore, its sum is also none of the usual nice angles π
2
, π
3
, π
4
, π
6
.

B. The tangent function tan(x) and the cotangent function cot(x) are reciprocal to each
other, and hence so are their inverse functions. So we are thinking about the value

of the form a+
1

a
, which varies as the value a varies, and not a constant. Therefore,

the above corollary does not apply to our situation.

C. The function f(x) = tan−1(x) + cot−1(x) is such that f ′(x) = 0 on (1, 2), and hence
it is constant on [1, 2].

Therefore,

tan−1(2) + cot−1(2) = f(2) = f(1) = tan−1(1) + cot−1(1) =
π

2
.

(correct)

D. The function f(x) = tan−1(x) + cot−1(x) is such that f ′(x) = 0 on (1, 2), and hence
it is constant on [1, 2].

Therefore,

tan−1(2) + cot−1(2) = f(2) = f(1) = tan−1(1) + cot−1(1) =
π

4
.

E. The function f(x) = tan−1(x) + cot−1(x) does not have the property that

f ′(x) = 0 on (1, 2), and hence we cannot apply the corollary to compute

the value of tan−1(2) + cot−1(2).
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6. Compute the following limit

lim
x→∞

(
x− 1

x+ 1

)5x

.

A. 1

B. e5

C. e−2

D. e10

E. e−10 (correct)

8



7. Find the interval where the curve

y =
2x2

x2 − 1

is concave up.

A. (−1, 1)

B. (−∞,−1)

C. (1,∞)

D. (−∞,−1) ∪ (1,∞) (correct)

E. (−∞,−1) ∪ (−1, 1) ∪ (1,∞)
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8. Choose the picture from below that best describes the graph of the function

f(x) =
x

x2 − 9
.

A.

B. (correct)

C.

D.

E.
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9. Find the equation of the slant asymptote to the graph of the function

f(x) =
6x3 + 3x2

3x2 + 1
.

A. y = 6x+ 3

B. y = x+ 2

C. y = 2x+ 1 (correct)

D. y = x

E. y = 2x
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10. Find the area of the largest rectangle that can be inscribed in a right triangle with legs
of lengths 3 cm and 8 cm if two sides of the rectangle lie along the legs.

A. 3 cm2

B. 4 cm2

C. 5 cm2

D. 6 cm2 (correct)

E. 7 cm2
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11. Find the equation of the line through the point (2, 5) that cuts off the least area from the
first quadrant.

A. y = −1

2
x+ 6

B. y = −x+ 7

C. y = −3

2
x+ 8

D. y = −2x+ 9

E. y = −5

2
x+ 10 (correct)

13



12. What two positive real numbers whose product is 50 have the smallest sum ?

A. 25 & 2

B. 50 & 1

C. 10 & 5

D. 10
√

2 &
5

2

√
2

E. 5
√

2 & 5
√

2 (correct)
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