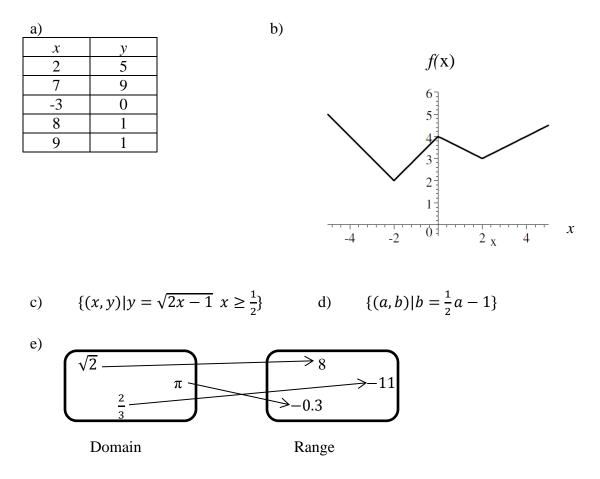
Definition of a Function: A function f if a correspondence that assigns each element from a **domain set** to one and only one element of a **range set**. Functions may be represented by sets, tables, diagrams (mappings), graphs, and equations. <u>Alternate Definition</u> A function is a set of ordered pairs (x, y) where each x is paired to one and only one y.

Compare the correspondences on the left that are **not functions** with those on the right that **are functions**.


Not Functions	Functions
{(2,3), (1,9), (3,0), (1,-5) (The element 1 from the domain is paired wi two different elements from the range.)	
x -2 -2 2 4 y 1 2 3 4 (The element -2 of the domain is paired with both 1 and 2 from the range set.)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
2 $3 \rightarrow 5$ $3 \rightarrow 5$	
Think: Vertical Line Test (see below)	
$y = \pm \sqrt{x}, x > 0$	$y = \sqrt[3]{x}$, $x \in \mathbb{R}$

DOMAIN: The domain of a function is the set of 'input' values or 'x' values. **RANGE:** The range of a function is the set of 'output' values or 'y' values. In a functions an element of the domain is paired to one and only one element of the range.

<u>Vertical Line Test:</u> The graph of a set of points in a coordinate plane is the graph of a function if every vertical line intersects the graph in at most one point.

Function Notation: If a function f is defined by the rule or correspondence $x - 4x^2$, we can write $y = x - 4x^2$ or $f(x) = x - 4x^2$. The notation f(x) is known as 'function notation' and indicates the 'output' of the function f that is paired with the 'input' x.

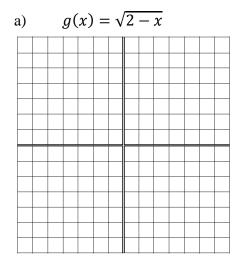
Ex 1: Determine if each represents a function of *x*. If it does, write the domain and range.

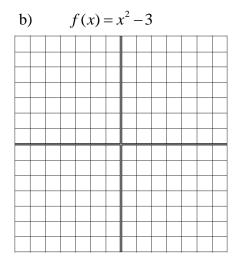
Ex 2: Given these functions: $h(x) = 2x - \sqrt{x}$, g(x) = 5x, f(x) = 3; find the following. (Assume the domain of function *h* is $[0, \infty)$ and the domains of function *f* and *g* are 'all real numbers'.) Note: The implied domain of any function is 'all real numbers' or 'only outputs that yield real values' unless given otherwise.

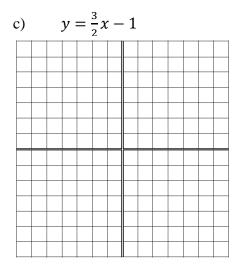
a)
$$h(4) =$$
 b) $g(\frac{4}{3}) =$ c) $f(9) =$
d) $h(\frac{16}{9}) =$ e) $f(\sqrt{2}) =$ f) $g(0) =$

2

Lesson 1

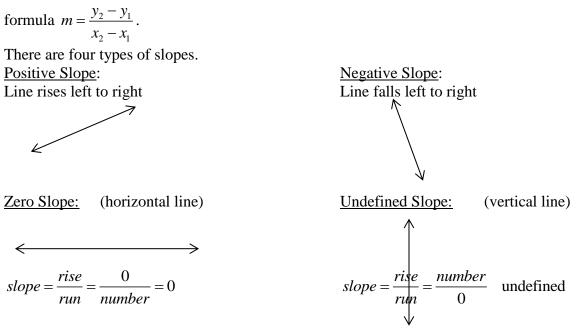

Functions/Domain & Range


<u>Ex 3</u>: Given: $f(x) = \frac{x-4}{x+2}$, $g(x) = x^2 - 2x + 3$, $j(x) = \sqrt{x-4}$. Find the following function values, if they exist.


a) f(8) = b) g(-2) = c) j(1) =

d) $f(-2) = e g(\sqrt{3}) = f j(9) =$

<u>Ex 4</u>: Graph each function. Assume the domain only includes 'reasonable' values that yield real 'outputs'. Pick a reasonable scale for each axis.



A function *f* is a **linear function** if f(x) = ax + bwhere *x* is any real number (domain is all real numbers) and *a* and *b* are constants. The graph of this function at the left will be a **line** with a **slope** of $\frac{3}{2}$ and a **y**-intercept at (0, -1).

A linear function' graph is a line. An equation for a line can be found if the slope of the line and a point are known or two points are known. Below are some important formulas for line.

<u>Slope of a Line</u>: If (x_1, y_1) and (x_2, y_2) are two points of a line, then the slope is given by the

Equations of Lines: If a line has slope *m* and a point (x_1, y_1) , then **point-slope form of the line is** $y - y_1 = m(x - x_1)$.

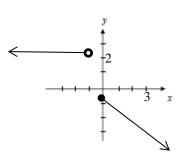
If a line has slope *m* and a *y*-intercept (0, b), then slope-intercept form of the line is y = mx + b.

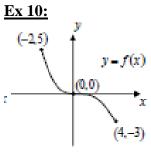
If *A*, *B*, and *C* represent integers and A > 0, then the following are equation of lines. General Form: Ax + By + C = 0Standard Form: Ax + By = C

<u>Ex 5</u>: Find the slope of the line containing points (-4,2) and $(\frac{2}{3},-1)$.

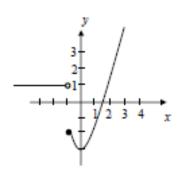
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 2}{\frac{2}{3} - (-4)} =$$

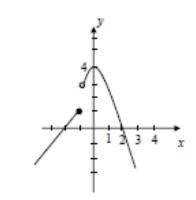
<u>Ex 6</u>: If a line has the point-slope form $y-2 = \frac{3}{4}(x+5)$, write the equation of the line in general form.

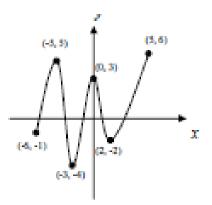

Ex 7: If an equation for a line in standard form is 5x - 2y = 3, find the slope and ordered pair for the *y*-intercept of the line.


<u>Ex 8:</u> Find the domain of each function.

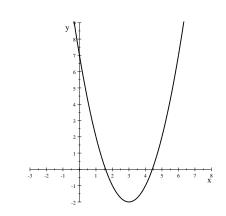
a)
$$f(x) = \sqrt{2x+7}$$
 b) $g(x) = \sqrt{9-x^2}$


c)
$$h(x) = \frac{2x-3}{x^2-5x+4}$$
 d) $j(x) = \frac{\sqrt{5-x}}{(x-1)(\sqrt{x+2})}$


Find the domain and range of each function graphed. **Ex 9:** $\underline{Ex 1}$



Ex 12:



<u>Ex 14:</u>

