Study Guide for Exam 1

1. You are supposed to be able to determine the center and radius of a sphere by "completing the square", given the equation of the form

$$
x^{2}+y^{2}+z^{2}+a x+b y+c z+d=0 .
$$

You are also suppoed to be able to compute the distance between two given points.

Example Poblem: Compute the distance from the point $P=(2,1,-5)$ to the closest point on the sphere defined by the equation

$$
x^{2}+y^{2}+z^{2}+2 x-6 y+9=0
$$

and the distance to the farthest point on the same sphere.
2. You are supposed to be able to compute the dot product $\vec{a} \cdot \vec{b}$ of two vectors \vec{a} and \vec{b}. You are supposed to understand the geometrical interpretation of the dot product $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$, where θ is the angle between the two vectors.

You should be able to use the orthogonality criterion in terms of the dot product

$$
\vec{a} \perp \vec{b} \Longleftrightarrow \vec{a} \cdot \vec{b}=0 .
$$

3. You are supposed to be able to compute the cross product $\vec{a} \times \vec{b}$ of two vectors \vec{a} and \vec{b}. You are supposed to understand the geometrical interpretation of the cross product $\vec{a} \times \vec{b}$ as the vector orthogonal to both \vec{a} and \vec{b}, where the direction is determined by the right hand rule, with the magnitude being equal to the area of the parallelogram fromed by the two vectors \vec{a} and \vec{b}. (As an application, if you want to compute the area of the parallelogram formed by \vec{a} and \vec{b}, then you can just compute the cross product and its magnitude.)
4. You are supposed to be able to compute the vector projection $\operatorname{proj}_{\vec{a}} \vec{b}$ of a vector \vec{b} onto \vec{a}, and scalar projection $\operatorname{comp}_{\vec{a}} \vec{b}$ by the formulas

$$
\left\{\begin{aligned}
\operatorname{proj}_{\vec{a}} \vec{b} & =\frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a} \\
\operatorname{comp}_{\vec{a}} \vec{b} & =\frac{\vec{a} \cdot \vec{b}}{\sqrt{\vec{a} \cdot \vec{a}}}
\end{aligned}\right.
$$

WARNING: Make a clear distiction between $\operatorname{proj}_{\vec{a}} \vec{b}$ and $\operatorname{proj}_{\vec{b}} \vec{a}$.
5. You are suppoesed to be able to compute the area of the region bounded by two curves $y=f(x)$ and $y=g(x)$ between $x=a$ and $x=b$ by the formula

$$
\int_{a}^{b}|f(x)-g(x)| d x .
$$

6. You are suppoesed to be able to compute the volume of a solid obtained by rotation using the washer method.
7. You are suppoesed to be able to compute the volume of a solid obtained by rotation using the method of cylindrical shells. (Look at Example 1 in 6.3 on Page 451 of the textbook.)
8. You are suppoesed to be able to compute the volume of a solid, given the description of its base and its cross sections.
9. You are suppoesed to be able to compute the amount of work needed to carry out a task. Typical examples are:

- work needed to empty the water from a tank in the shape of an inverted circulat cone (Look at Example 5 in 6.4 on Page 457 of the textbook.),
- work needed to stretch a spring (Look at Example 3 in 6.4 on Page 457 of the textbook.),
- work needed to lift a chain (Look at Problem 19 in 6.4 on Page 459).

10. You are suppoesed to be able to compute the average value $f_{\text {ave }}$ of a function $y=f(x)$ on the interval $[a, b]$ by the formula

$$
f_{\mathrm{ave}}=\frac{\int_{a}^{b} f(x) d x}{b-a} .
$$

11. You are suppoed to be able to evaluate the integral using integration by parts.
