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53. A =

 1 0 −3 0

3 0 −9 0
−2 0 6 0


. 54. A =


 2+ i i 3− 2i

i 1− i 4+ 3i
3− i 1+ i 1+ 5i


.

2.6 The Inverse of a Square Matrix

In this section we investigate the situation when, for a given n× nmatrix A, there exists
a matrix B satisfying

AB = In and BA = In (2.6.1)

and derive an efficient method for determining B (when it does exist). As a possible
application of the existence of such a matrix B, consider the n× n linear system

Ax = b. (2.6.2)

Premultiplying both sides of (2.6.2) by an n× n matrix B yields

(BA)x = Bb.

Assuming that BA = In, this reduces to

x = Bb. (2.6.3)

Thus, we have determined a solution to the system (2.6.2) by a matrix multiplication. Of
course, this depends on the existence of a matrix B satisfying (2.6.1), and even if such a
matrix B does exist, it will turn out that using (2.6.3) to solve n× n systems is not very
efficient computationally. Therefore it is generally not used in practice to solve n × n
systems. However, from a theoretical point of view, a formula such as (2.6.3) is very
useful. We begin the investigation by establishing that there can be at most one matrix
B satisfying (2.6.1) for a given n× n matrix A.

Theorem 2.6.1 Let A be an n× n matrix. Suppose B and C are both n× n matrices satisfying

AB = BA = In, (2.6.4)

AC = CA = In, (2.6.5)

respectively. Then B = C.

Proof From (2.6.4), it follows that

C = CIn = C(AB).
That is,

C = (CA)B = InB = B,
where we have used (2.6.5) to replace CA by In in the second step.

Since the identity matrix In plays the role of the number 1 in the multiplication of
matrices, the properties given in (2.6.1) are the analogs for matrices of the properties

xx−1 = 1, x−1x = 1,

which holds for all (nonzero) numbers x. It is therefore natural to denote the matrix B
in (2.6.1) by A−1 and to call it the inverse of A. The following definition introduces the
appropriate terminology.
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DEFINITION 2.6.2

Let A be an n× n matrix. If there exists an n× n matrix A−1 satisfying

AA−1 = A−1A = In,
then we call A−1 the matrix inverse to A, or just the inverse of A. We say that A is
invertible if A−1 exists.

Invertible matrices are sometimes called nonsingular, while matrices that are not
invertible are sometimes called singular.

Remark It is important to realize that A−1 denotes the matrix that satisfies

AA−1 = A−1A = In.
It does not mean 1/A, which has no meaning whatsoever.

Example 2.6.3 If A =

1 −1 2

2 −3 3
1 −1 1


, verify that B =


0 −1 3

1 −1 1
1 0 −1


 is the inverse of A.

Solution: By direct multiplication, we find that

AB =

1 −1 2

2 −3 3
1 −1 1




0 −1 3

1 −1 1
1 0 −1


 =


1 0 0

0 1 0
0 0 1


 = I3

and

BA =

0 −1 3

1 −1 1
1 0 −1




1 −1 2

2 −3 3
1 −1 1


 =


1 0 0

0 1 0
0 0 1


 = I3.

Consequently, (2.6.1) is satisfied, hence B is indeed the inverse of A. We therefore
write

A−1 =

0 −1 3

1 −1 1
1 0 −1


 . �

We now return to the n× n system of Equations (2.6.2).

Theorem 2.6.4 If A−1 exists, then the n× n system of linear equations

Ax = b

has the unique solution
x = A−1b

for every b in R
n.
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Proof We can verify by direct substitution that x = A−1b is indeed a solution to the
linear system. The uniqueness of this solution is contained in the calculation leading
from (2.6.2) to (2.6.3).

Our next theorem establishes when A−1 exists, and it also uncovers an efficient
method for computing A−1.

Theorem 2.6.5 An n× n matrix A is invertible if and only if rank(A) = n.

Proof If A−1 exists, then by Theorem 2.6.4, any n × n linear system Ax = b has a
unique solution. Hence, Theorem 2.5.9 implies that rank(A) = n.

Conversely, suppose rank(A) = n. We must establish that there exists an n × n
matrix X satisfying

AX = In = XA.
Let e1, e2, . . . , en denote the column vectors of the identity matrix In. Since rank(A) = n,
Theorem 2.5.9 implies that each of the linear systems

Axi = ei , i = 1, 2, . . . , n (2.6.6)

has a unique solution7 xi . Consequently, if we let X = [x1, x2, . . . , xn], where x1, x2,

. . . , xn are the unique solutions of the systems in (2.6.6), then

A[x1, x2, . . . , xn] = [Ax1, Ax2, . . . , Axn] = [e1, e2, . . . , en];
that is,

AX = In. (2.6.7)

We must also show that, for the same matrix X,

XA = In.
Postmultiplying both sides of (2.6.7) by A yields

(AX)A = A.
That is,

A(XA− In) = 0n. (2.6.8)

Now let y1, y2, . . . , yn denote the column vectors of the n × n matrix XA − In.
Equating corresponding column vectors on either side of (2.6.8) implies that

Ayi = 0, i = 1, 2, . . . , n. (2.6.9)

But, by assumption, rank(A) = n, and so each system in (2.6.9) has a unique solution
that, since the systems are homogeneous, must be the trivial solution. Consequently, each
yi is the zero vector, and thus

XA− In = 0n.

Therefore,

XA = In. (2.6.10)

7Notice that for an n× n system Ax = b, if rank(A) = n, then rank(A#) = n.
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Equations (2.6.7) and (2.6.10) imply that X = A−1.

We now have the following converse to Theorem 2.6.4.

Corollary 2.6.6 Let A be an n× n matrix. If Ax = b has a unique solution for some column n-vector b,

then A−1 exists.

Proof If Ax = b has a unique solution, then from Theorem 2.5.9, rank(A) = n, and
so from the previous theorem, A−1 exists.

Remark In particular, the above corollary tells us that if the homogeneous linear
system Ax = 0 has only the trivial solution x = 0, then A−1 exists.

Other criteria for deciding whether or not an n× n matrix A has an inverse will be
developed in the next three chapters, but our goal at present is to develop a method for
finding A−1, should it exist.

Assuming that rank(A) = n, let x1, x2, . . . , xn denote the column vectors of A−1.
Then, from (2.6.6), these column vectors can be obtained by solving each of the n× n
systems

Axi = ei , i = 1, 2, . . . , n.

As we now show, some computation can be saved if we employ the Gauss-Jordan method
in solving these systems. We first illustrate the method when n = 3. In this case, from
(2.6.6), the column vectors of A−1 are determined by solving the three linear systems

Ax1 = e1, Ax2 = e2, Ax3 = e3.

The augmented matrices of these systems can be written as
A

1
0
0


 ,

A

0
1
0


 ,

A

0
0
1


 ,

respectively. Furthermore, since rank(A) = 3 by assumption, the reduced row-echelon
form ofA is I3. Consequently, using elementary row operations to reduce the augmented
matrix of the first system to reduced row-echelon form will yield, schematically,

A
1
0
0


 ∼ ERO. . . ∼


 1 0 0 a1

0 1 0 a2
0 0 1 a3


 ,

which implies that the first column vector of A−1 is

x1 =

 a1
a2
a3


 .

Similarly, for the second system, the reduction
A

0
1
0


 ∼ ERO. . . ∼


 1 0 0 b1

0 1 0 b2
0 0 1 b3
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implies that the second column vector of A−1 is

x2 =

 b1
b2
b3


 .

Finally, for the third system, the reduction
A

0
0
1


 ∼ ERO. . . ∼


 1 0 0 c1

0 1 0 c2
0 0 1 c3




implies that the third column vector of A−1 is

x3 =

 c1
c2
c3


 .

Consequently,

A−1 = [x1, x2, x3] =

 a1 b1 c1
a2 b2 c2
a3 b3 c3


 .

The key point to notice is that in solving for x1, x2, x3 we use the same elementary
row operations to reduce A to I3. We can therefore save a significant amount of work by
combining the foregoing operations as follows:

A
1 0 0
0 1 0
0 0 1


 ∼ ERO. . . ∼


 1 0 0 a1 b1 c1

0 1 0 a2 b2 c2
0 0 1 a3 b3 c3


 .

The generalization to the n× n case is immediate. We form the n× 2n matrix [A In]
and reduce A to In using elementary row operations. Schematically,

[A In] ∼ ERO... ∼ [In A−1].
This method of finding A−1 is called the Gauss-Jordan technique.

Remark Notice that if we are given an n× nmatrix A, we likely will not know from
the outset whether rank(A) = n, hence we will not know whether A−1 exists. However,
if at any stage in the row reduction of [A In] we find that rank(A) < n, then it will
follow from Theorem 2.6.5 that A is not invertible.

Example 2.6.7 Find A−1 if A =

 1 1 3

0 1 2
3 5 −1


.

Solution: Using the Gauss-Jordan technique, we proceed as follows.
 1 1 3 1 0 0

0 1 2 0 1 0
3 5 −1 0 0 1


 1

∼


 1 1 3 1 0 0

0 1 2 0 1 0
0 2 −10 −3 0 1


 2

∼


 1 0 1 1 −1 0

0 1 2 0 1 0
0 0 −14 −3 −2 1




3
∼


 1 0 1 1 −1 0

0 1 2 0 1 0
0 0 1 3

14
1
7 − 1

14


 4

∼




1 0 0 11
14 − 8

7
1

14

0 1 0 − 3
7

5
7

1
7

0 0 1 3
14

1
7 − 1

14


 .
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Thus,

A−1 =




11
14 − 8

7
1

14

− 3
7

5
7

1
7

3
14

1
7 − 1

14


 .

We leave it as an exercise to confirm that AA−1 = A−1A = I3.

1. A13(−3) 2. A21(−1), A23(−2) 3. M3(−1/14) 4. A31(−1), A32(−2) �

Example 2.6.8 Continuing the previous example, use A−1 to solve the system

x1 + x2 + 3x3 = 2,
x2 + 2x3 = 1,

3x1 + 5x2 − x3 = 4.

Solution: The system can be written as

Ax = b,

where A is the matrix in the previous example, and

b =

 2

1
4


 .

Since A is invertible, the system has a unique solution that can be written as x = A−1b.
Thus, from the previous example we have

x =




11
14 − 8

7
1

14

− 3
7

5
7

1
7

3
14

1
7 − 1

14







2

1

4


 =




5
7

3
7

2
7


 .

Consequently, x1 = 5
7 , x2 = 3

7 , and x3 = 2
7 , so that the solution to the system is(

5
7 ,

3
7 ,

2
7

)
. �

We now return to more theoretical information pertaining to the inverse of a matrix.

Properties of the Inverse
The inverse of an n × n matrix satisfies the properties stated in the following theorem,
which should be committed to memory:

Theorem 2.6.9 Let A and B be invertible n× n matrices. Then

1. A−1 is invertible and (A−1)−1 = A.

2. AB is invertible and (AB)−1 = B−1A−1.

3. AT is invertible and (AT )−1 = (A−1)T .



“main”
2007/2/16
page 168

�

�

�

�

�

�

�

�

168 CHAPTER 2 Matrices and Systems of Linear Equations

Proof The proof of each result consists of verifying that the appropriate matrix products
yield the identity matrix.

1. We must verify that

A−1A = In and AA−1 = In.
Both of these follow directly from Definition 2.6.2.

2. We must verify that

(AB)(B−1A−1) = In and (B−1A−1)(AB) = In.
We establish the first equality, leaving the second equation as an exercise. We have

(AB)(B−1)(A−1) = A(BB−1)A−1 = AInA−1 = AA−1 = In.

3. We must verify that

AT (A−1)T = In and (A−1)T AT = In.
Again, we prove the first part, leaving the second part as an exercise.

First recall from Theorem 2.2.21 that AT BT = (BA)T . Using this property with
B = A−1 yields

AT (A−1)T = (A−1A)T = ITn = In.

The proof of property 2 of Theorem 2.6.9 can easily be extended to a statement
about invertibility of a product of an arbitrary finite number of matrices. More precisely,
we have the following.

Corollary 2.6.10 Let A1, A2, . . . , Ak be invertible n× n matrices. Then A1A2 · · ·Ak is invertible, and

(A1A2 · · ·Ak)−1 = A−1
k A−1

k−1 · · ·A−1
1 .

Proof The proof is left as an exercise (Problem 28).

Some Further Theoretical Results
Finally, in this section, we establish two results that will be required in Section 2.7 and
also in a proof that arises in Section 3.2.

Theorem 2.6.11 Let A and B be n × n matrices. If AB = In, then both A and B are invertible and
B = A−1.

Proof Let b be an arbitrary column n-vector. Then, since AB = In, we have

A(Bb) = Inb = b.

Consequently, for every b, the systemAx = b has the solution x = Bb. But this implies
that rank(A) = n. To see why, suppose that rank(A) < n, and let A∗ denote a row-
echelon form of A. Note that the last row of A∗ is zero. Choose b∗ to be any column
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n-vector whose last component is nonzero. Then, since rank(A) < n, it follows that the
system

A∗x = b∗

is inconsistent. But, applying to the augmented matrix [A∗ b∗] the inverse row opera-
tions that reduced A to row-echelon form yields [A b] for some b. Since Ax = b has
the same solution set as A∗x = b∗, it follows that Ax = b is inconsistent. We therefore
have a contradiction, and so it must be the case that rank(A) = n, and therefore that A
is invertible by Theorem 2.6.5.

We now establish that8 A−1 = B. Since AB = In by assumption, we have

A−1 = A−1In = A−1(AB) = (A−1A)B = InB = B,

as required. It now follows directly from property 1 of Theorem 2.6.9 that B is invertible
with inverse A.

Corollary 2.6.12 LetA and B be n×nmatrices. IfAB is invertible, then bothA and B are invertible.

Proof If we let C = B(AB)−1 and D = AB, then

AC = AB(AB)−1 = DD−1 = In.

It follows from Theorem 2.6.11 that A is invertible. Similarly, if we let C = (AB)−1A,
then

CB = (AB)−1AB = In.
Once more we can apply Theorem 2.6.11 to conclude that B is invertible.

Exercises for 2.6

Key Terms
Inverse, Invertible, Singular, Nonsingular, Gauss-Jordan
technique.

Skills

• Be able to check directly whether or not two matrices
A and B are inverses of each other.

• Be able to find the inverse of an invertible matrix via
the Gauss-Jordan technique.

• Be able to use the inverse of a coefficient matrix of a
linear system in order to solve the system.

• Know the basic properties related to how the inverse
operation behaves with respect to itself, multiplica-
tion, and transpose (Theorem 2.6.9).

True-False Review

For Questions 1–10, decide if the given statement is true or
false, and give a brief justification for your answer. If true,
you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.

1. An invertible matrix is also known as a singular matrix.

8Note that it now makes sense to speak of A−1, whereas prior to proving in the preceding paragraph that
A is invertible, it would not have been legal to use the notation A−1.
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2. Every square matrix that does not contain a row of
zeros is invertible.

3. A linear system Ax = b with an n × n invertible co-
efficient matrix A has a unique solution.

4. If A is a matrix such that there exists a matrix B with
AB = In, then A is invertible.

5. If A and B are invertible n × n matrices, then so is
A+ B.

6. If A and B are invertible n × n matrices, then so is
AB.

7. If A is an invertible matrix such that A2 = A, then A
is the identity matrix.

8. IfA is an n×n invertible matrix andB andC are n×n
matrices such that AB = AC, then B = C.

9. IfA is a 5×5 matrix of rank 4, thenA is not invertible.

10. If A is a 6× 6 matrix of rank 6, then A is invertible.

Problems
For Problems 1–3 verify by direct multiplication that the
given matrices are inverses of one another.

1. A =
[

2 −1
3 −1

]
, A−1 =

[−1 1
−3 2

]
.

2. A =
[

4 9
3 7

]
, A−1 =

[
7 −9
−3 4

]
.

3. A =

 3 5 1

1 2 1
2 6 7


 , A−1 =


 8 −29 3
−5 19 −2

2 −8 1


.

For Problems 4–16, determine A−1, if possible, using the
Gauss-Jordan method. If A−1 exists, check your answer by
verifying that AA−1 = In.

4. A =
[

1 2
1 3

]
.

5. A =
[

1 1+ i
1− i 1

]
.

6. A =
[

1 −i
−1+ i 2

]
.

7. A =
[

0 0
0 0

]
.

8. A =

 1 −1 2

2 1 11
4 −3 10


.

9. A =

 3 5 1

1 2 1
2 6 7


.

10. A =

 0 1 0

0 0 1
0 1 2


.

11. A =

 4 2 −13

2 1 −7
3 2 4


.

12. A =

 1 2 −3

2 6 −2
−1 1 4


.

13. A =

 1 i 2

1+ i −1 2i
2 2i 5


.

14. A =

 2 1 3

1 −1 2
3 3 4


.

15. A =




1 −1 2 3
2 0 3 −4
3 −1 7 8
1 0 3 5


.

16. A =




0 −2 −1 −3
2 0 2 1
1 −2 0 2
3 −1 −2 0


.

17. Let

A =

 2 −1 4

5 1 2
1 −1 3


 .

Find the second column vector of A−1 without deter-
mining the whole inverse.

For Problems 18–22, useA−1 to find the solution to the given
system.

18.
x1 + 3x2 = 1,

2x1 + 5x2 = 3.

19.
x1 + x2 − 2x3 = −2,

x2 + x3 = 3,
2x1 + 4x2 − 3x3 = 1.

20.
x1 − 2ix2 = 2,

(2− i)x1 + 4ix2 = −i.
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21.
3x1 + 4x2 + 5x3 = 1,
2x1 + 10x2 + x3 = 1,
4x1 + x2 + 8x3 = 1.

22.
x1 + x2 + 2x3 = 12,
x1 + 2x2 − x3 = 24,

2x1 − x2 + x3 = −36.

An n × n matrix A is called orthogonal if AT = A−1. For
Problems 23–26, show that the given matrices are orthogo-
nal.

23. A =
[

0 1
−1 0

]
.

24. A =
[√

3/2 1/2
−1/2

√
3/2

]
.

25. A =
[

cosα sin α
− sin α cosα

]
.

26. A = 1

1+ 2x2


 1 −2x 2x2

2x 1− 2x2 −2x
2x2 2x 1


.

27. Complete the proof of Theorem 2.6.9 by verifying the
remaining properties in parts 2 and 3.

28. Prove Corollary 2.6.10.

For Problems 29–30, use properties of the inverse to prove
the given statement.

29. IfA is an n×n invertible symmetric matrix, thenA−1

is symmetric.

30. IfA is an n×n invertible skew-symmetric matrix, then
A−1 is skew-symmetric.

31. Let A be an n × n matrix with A4 = 0. Prove that
In − A is invertible with

(In − A)−1 = In + A+ A2 + A3.

32. Prove that if A,B,C are n × n matrices satisfying
BA = In and AC = In, then B = C.

33. If A,B,C are n× nmatrices satisfying BA = In and
CA = In, does it follow that B = C? Justify your
answer.

34. Consider the general 2× 2 matrix

A =
[
a11 a12
a21 a22

]
and let
 = a11a22 − a12a21 with a11 �= 0. Show that
if 
 �= 0,

A−1 = 1




[
a22 −a12
−a21 a11

]
.

The quantity 
 defined above is referred to as the de-
terminant of A. We will investigate determinants in
more detail in the next chapter.

35. Let A be an n × n matrix, and suppose that we have
to solve the p linear systems

Axi = bi , i = 1, 2, . . . , p

where the bi are given. Devise an efficient method for
solving these systems.

36. Use your method from the previous problem to solve
the three linear systems

Axi = bi , i = 1, 2, 3

if

A =

 1 −1 1

2 −1 4
1 1 6


 , b1 =


 1

1
−1


 ,

b2 =

−1

2
5


 , b3 =


 2

3
2


 .

37. Let A be an m× n matrix with m ≤ n.

(a) If rank(A) = m, prove that there exists a matrix
B satisfying AB = Im. Such a matrix is called a
right inverse of A.

(b) If

A =
[

1 3 1
2 7 4

]
,

determine all right inverses of A.

� For Problems 38–39, reduce the matrix [A In] to reduced
row-echelon form and thereby determine, if possible, the in-
verse of A.

38. A =

 5 9 17

7 21 13
27 16 8


.

39. A is a randomly generated 4× 4 matrix.

� For Problems 40–42, use built-in functions of some form
of technology to determine rank(A) and, if possible,A−1.

40. A =

 3 5 −7

2 5 9
13 −11 22


.
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41. A =




7 13 15 21
9 −2 14 23

17 −27 22 31
19 −42 21 33


.

42. A is a randomly generated 5× 5 matrix.

43. � For the system in Problem 21, determine A−1 and
use it to solve the system.

44. � Consider the n× n Hilbert matrix

Hn =
[

1

i + j − 1

]
, 1 ≤ i, j ≤ n.

(a) Determine H4 and show that it is invertible.

(b) Find H−1
4 and use it to solve H4x = b if b =

[2,−1, 3, 5]T .

2.7 Elementary Matrices and the LU Factorization

We now introduce some matrices that can be used to perform elementary row operations
on a matrix. Although they are of limited computational use, they do play a significant
role in linear algebra and its applications.

DEFINITION 2.7.1

Any matrix obtained by performing a single elementary row operation on the identity
matrix is called an elementary matrix.

In particular, an elementary matrix is always a square matrix. In general we will
denote elementary matrices byE. If we are describing a specific elementary matrix, then
in keeping with the notation introduced previously for elementary row operations, we
will use the following notation for the three types of elementary matrices:

Type 1: Pij—permute rows i and j in In.
Type 2: Mi (k)—multiply row i of In by the nonzero scalar k.
Type 3: Aij (k)—add k times row i of In to row j of In.

Example 2.7.2 Write all 2× 2 elementary matrices.

Solution: From Definition 2.7.1 and using the notation introduced above, we have

1. Permutation matrix: P12 =
[

0 1
1 0

]
.

2. Scaling matrices: M1(k) =
[
k 0
0 1

]
, M2(k) =

[
1 0
0 k

]
.

3. Row combinations: A12(k) =
[

1 0
k 1

]
, A21(k) =

[
1 k
0 1

]
.

�

We leave it as an exercise to verify that the n × n elementary matrices have the
following structure:


