\oplus

 \oplus

 \oplus

 \oplus

53.
$$A = \begin{bmatrix} 1 & 0 & -3 & 0 \\ 3 & 0 & -9 & 0 \\ -2 & 0 & 6 & 0 \end{bmatrix}.$$
54.
$$A = \begin{bmatrix} 2+i & i & 3-2i \\ i & 1-i & 4+3i \\ 3-i & 1+i & 1+5i \end{bmatrix}.$$

2.6 The Inverse of a Square Matrix

In this section we investigate the situation when, for a given $n \times n$ matrix A, there exists a matrix B satisfying

$$AB = I_n$$
 and $BA = I_n$ (2.6.1)

and derive an efficient method for determining *B* (when it does exist). As a possible application of the existence of such a matrix *B*, consider the $n \times n$ linear system

$$A\mathbf{x} = \mathbf{b}.\tag{2.6.2}$$

Premultiplying both sides of (2.6.2) by an $n \times n$ matrix B yields

$$(BA)\mathbf{x} = B\mathbf{b}.$$

Assuming that $BA = I_n$, this reduces to

$$\mathbf{x} = B\mathbf{b}.\tag{2.6.3}$$

Thus, we have determined a solution to the system (2.6.2) by a matrix multiplication. Of course, this depends on the existence of a matrix *B* satisfying (2.6.1), and even if such a matrix *B* does exist, it will turn out that using (2.6.3) to solve $n \times n$ systems is not very efficient computationally. Therefore it is generally not used in practice to solve $n \times n$ systems. However, from a theoretical point of view, a formula such as (2.6.3) is very useful. We begin the investigation by establishing that there can be at most one matrix *B* satisfying (2.6.1) for a given $n \times n$ matrix *A*.

Theorem 2.6.1 Let A be an $n \times n$ matrix. Suppose B and C are both $n \times n$ matrices satisfying

$$AB = BA = I_n, \tag{2.6.4}$$

$$AC = CA = I_n, \tag{2.6.5}$$

respectively. Then B = C.

Proof From (2.6.4), it follows that

$$C = CI_n = C(AB).$$

That is,

 $C = (CA)B = I_n B = B,$

where we have used (2.6.5) to replace CA by I_n in the second step.

Since the identity matrix I_n plays the role of the number 1 in the multiplication of matrices, the properties given in (2.6.1) are the analogs for matrices of the properties

$$xx^{-1} = 1$$
, $x^{-1}x = 1$.

which holds for all (nonzero) numbers x. It is therefore natural to denote the matrix B in (2.6.1) by A^{-1} and to call it the inverse of A. The following definition introduces the appropriate terminology.

em 2.0.1 Let A be

 \oplus

 \oplus

"main"

2007/2/16 page 162

"main"

2007/2/16 page 163

 \oplus

 \oplus

 \oplus

DEFINITION 2.6.2

Let A be an $n \times n$ matrix. If there exists an $n \times n$ matrix A^{-1} satisfying

$$AA^{-1} = A^{-1}A = I_n,$$

then we call A^{-1} the matrix **inverse** to A, or just the inverse of A. We say that A is **invertible** if A^{-1} exists.

Invertible matrices are sometimes called **nonsingular**, while matrices that are not invertible are sometimes called **singular**.

Remark It is important to realize that A^{-1} denotes the matrix that satisfies

$$AA^{-1} = A^{-1}A = I_n$$

It does *not* mean 1/A, which has no meaning whatsoever.

Example 2.6.3 If
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & -3 & 3 \\ 1 & -1 & 1 \end{bmatrix}$$
, verify that $B = \begin{bmatrix} 0 & -1 & 3 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$ is the inverse of A .

Solution: By direct multiplication, we find that

$$AB = \begin{bmatrix} 1 & -1 & 2 \\ 2 & -3 & 3 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 3 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3$$

and

$$BA = \begin{bmatrix} 0 & -1 & 3 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ 2 & -3 & 3 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3.$$

Consequently, (2.6.1) is satisfied, hence *B* is indeed the inverse of *A*. We therefore write

$$A^{-1} = \begin{bmatrix} 0 & -1 & 3 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}.$$

We now return to the $n \times n$ system of Equations (2.6.2).

Theorem 2.6.4

 \oplus

 \oplus

 \oplus

 \oplus

If A^{-1} exists, then the $n \times n$ system of linear equations

$$A\mathbf{x} = \mathbf{b}$$

has the unique solution

$$\mathbf{x} = A^{-1}\mathbf{b}$$

for every **b** in \mathbb{R}^n .

Proof We can verify by direct substitution that $\mathbf{x} = A^{-1}\mathbf{b}$ is indeed a solution to the linear system. The uniqueness of this solution is contained in the calculation leading from (2.6.2) to (2.6.3).

Our next theorem establishes when A^{-1} exists, and it also uncovers an efficient method for computing A^{-1} .

Theorem 2.6.5

 \oplus

 \oplus

 \oplus

 \oplus

An $n \times n$ matrix A is invertible if and only if rank(A) = n.

Proof If A^{-1} exists, then by Theorem 2.6.4, any $n \times n$ linear system $A\mathbf{x} = \mathbf{b}$ has a unique solution. Hence, Theorem 2.5.9 implies that rank(A) = n.

Conversely, suppose rank(A) = n. We must establish that there exists an $n \times n$ matrix X satisfying

$$AX = I_n = XA.$$

Let $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ denote the column vectors of the identity matrix I_n . Since rank(A) = n, Theorem 2.5.9 implies that each of the linear systems

$$A\mathbf{x}_i = \mathbf{e}_i, \qquad i = 1, 2, \dots, n$$
 (2.6.6)

"main"

2007/2/16 page 164

 \oplus

 \oplus

 \oplus

has a unique solution⁷ \mathbf{x}_i . Consequently, if we let $X = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n]$, where $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ are the unique solutions of the systems in (2.6.6), then

$$A[\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n] = [A\mathbf{x}_1, A\mathbf{x}_2, \dots, A\mathbf{x}_n] = [\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n];$$

that is,

$$AX = I_n. \tag{2.6.7}$$

We must also show that, for the same matrix X,

$$XA = I_n$$
.

Postmultiplying both sides of (2.6.7) by A yields

$$(AX)A = A.$$

That is,

$$A(XA - I_n) = 0_n. (2.6.8)$$

Now let $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n$ denote the column vectors of the $n \times n$ matrix $XA - I_n$. Equating corresponding column vectors on either side of (2.6.8) implies that

$$A\mathbf{y}_i = \mathbf{0}, \qquad i = 1, 2, \dots, n.$$
 (2.6.9)

But, by assumption, rank(A) = n, and so each system in (2.6.9) has a unique solution that, since the systems are homogeneous, must be the trivial solution. Consequently, each y_i is the zero vector, and thus

$$XA - I_n = 0_n.$$

 $XA = I_n$.

Therefore,

⁷Notice that for an $n \times n$ system $A\mathbf{x} = \mathbf{b}$, if rank(A) = n, then rank $(A^{\#}) = n$.

Equations (2.6.7) and (2.6.10) imply that $X = A^{-1}$.

We now have the following converse to Theorem 2.6.4.

Corollary 2.6.6

 \oplus

 \oplus

 \oplus

 \oplus

Let *A* be an $n \times n$ matrix. If $A\mathbf{x} = \mathbf{b}$ has a unique solution for some column *n*-vector \mathbf{b} , then A^{-1} exists.

Proof If $A\mathbf{x} = \mathbf{b}$ has a unique solution, then from Theorem 2.5.9, rank(A) = n, and so from the previous theorem, A^{-1} exists.

Remark In particular, the above corollary tells us that if the homogeneous linear system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$, then A^{-1} exists.

Other criteria for deciding whether or not an $n \times n$ matrix A has an inverse will be developed in the next three chapters, but our goal at present is to develop a method for finding A^{-1} , should it exist.

Assuming that rank(A) = n, let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ denote the column vectors of A^{-1} . Then, from (2.6.6), these column vectors can be obtained by solving each of the $n \times n$ systems

$$A\mathbf{x}_i = \mathbf{e}_i, \qquad i = 1, 2, \ldots, n.$$

As we now show, some computation can be saved if we employ the Gauss-Jordan method in solving these systems. We first illustrate the method when n = 3. In this case, from (2.6.6), the column vectors of A^{-1} are determined by solving the three linear systems

$$A\mathbf{x}_1 = \mathbf{e}_1, \qquad A\mathbf{x}_2 = \mathbf{e}_2, \qquad A\mathbf{x}_3 = \mathbf{e}_3.$$

The augmented matrices of these systems can be written as

$$\begin{bmatrix} \mathbf{A} & 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \mathbf{A} & 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \mathbf{A} & 0 \\ 1 \\ 1 \end{bmatrix},$$

respectively. Furthermore, since rank(A) = 3 by assumption, the reduced row-echelon form of *A* is I_3 . Consequently, using elementary row operations to reduce the augmented matrix of the first system to reduced row-echelon form will yield, schematically,

$$\begin{bmatrix} \mathbf{A} & 1 \\ 0 \\ 0 \end{bmatrix} \sim \stackrel{\text{ERO}}{\cdots} \sim \begin{bmatrix} 1 & 0 & 0 & a_1 \\ 0 & 1 & 0 & a_2 \\ 0 & 0 & 1 & a_3 \end{bmatrix},$$

which implies that the first column vector of A^{-1} is

$$\mathbf{x}_1 = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}.$$

Similarly, for the second system, the reduction

$$\begin{bmatrix} \mathbf{A} & 0 \\ 1 \\ 0 \end{bmatrix} \sim \stackrel{\text{ERO}}{\cdots} \sim \begin{bmatrix} 1 & 0 & 0 & b_1 \\ 0 & 1 & 0 & b_2 \\ 0 & 0 & 1 & b_3 \end{bmatrix}$$

"main"

2007/2/16 page 165

 \oplus

 \oplus

 \oplus

 \oplus

 \oplus

 \oplus

implies that the second column vector of A^{-1} is

$$\mathbf{x}_2 = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Finally, for the third system, the reduction

$$\begin{bmatrix} \mathbf{A} & 0 \\ 0 \\ 1 \end{bmatrix} \sim \stackrel{\text{ERO}}{\cdots} \sim \begin{bmatrix} 1 & 0 & 0 & c_1 \\ 0 & 1 & 0 & c_2 \\ 0 & 0 & 1 & c_3 \end{bmatrix}$$

implies that the third column vector of A^{-1} is

$$\mathbf{x}_3 = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}.$$

Consequently,

$$A^{-1} = [\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3] = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}.$$

The key point to notice is that in solving for \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 we use the *same* elementary row operations to reduce *A* to I_3 . We can therefore save a significant amount of work by combining the foregoing operations as follows:

$$\begin{bmatrix} \mathbf{A} & 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \sim \stackrel{\text{ERO}}{\cdots} \sim \begin{bmatrix} 1 & 0 & 0 & a_1 & b_1 & c_1 \\ 0 & 1 & 0 & a_2 & b_2 & c_2 \\ 0 & 0 & 1 & a_3 & b_3 & c_3 \end{bmatrix}$$

•

The generalization to the $n \times n$ case is immediate. We form the $n \times 2n$ matrix $\begin{bmatrix} A & I_n \end{bmatrix}$ and reduce A to I_n using elementary row operations. Schematically,

$$[A \quad I_n] \sim \stackrel{\text{ERO}}{\dots} \sim [I_n \quad A^{-1}]$$

This method of finding A^{-1} is called the **Gauss-Jordan technique**.

Remark Notice that if we are given an $n \times n$ matrix A, we likely will not know from the outset whether rank(A) = n, hence we will not know whether A^{-1} exists. However, if at any stage in the row reduction of $[A \ I_n]$ we find that rank(A) < n, then it will follow from Theorem 2.6.5 that A is not invertible.

Example 2.6.7 Find
$$A^{-1}$$
 if $A = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 2 \\ 3 & 5 & -1 \end{bmatrix}$.
Solution: Using the Gauss-Jordan technique, we proceed as follows:
 $\begin{bmatrix} 1 & 1 & 3 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \end{bmatrix} \stackrel{1}{\sim} \begin{bmatrix} 1 & 1 & 3 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 2 & -10 & -3 & 0 & 1 \end{bmatrix} \stackrel{2}{\sim} \begin{bmatrix} 1 & 0 & 1 & 1 & -1 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & -14 & -3 & -2 & 1 \end{bmatrix}$
 $\stackrel{3}{\sim} \begin{bmatrix} 1 & 0 & 1 & 1 & -1 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & \frac{3}{14} & \frac{1}{7} & -\frac{1}{14} \end{bmatrix} \stackrel{4}{\sim} \begin{bmatrix} 1 & 0 & 0 & \frac{11}{14} & -\frac{8}{7} & \frac{1}{14} \\ 0 & 1 & 0 & -\frac{3}{7} & \frac{5}{7} & \frac{1}{7} \\ 0 & 0 & 1 & \frac{3}{14} & \frac{1}{7} & -\frac{1}{14} \end{bmatrix}$.

 $-\oplus$

 \oplus

 \oplus

"main"

2007/2/16 page 166

"main"

2007/2/16 page 167

 \oplus

 \oplus

 \oplus

Thus,

$$A^{-1} = \begin{bmatrix} \frac{11}{14} & -\frac{8}{7} & \frac{1}{14} \\ -\frac{3}{7} & \frac{5}{7} & \frac{1}{7} \\ \frac{3}{14} & \frac{1}{7} & -\frac{1}{14} \end{bmatrix}.$$

We leave it as an exercise to confirm that $AA^{-1} = A^{-1}A = I_3$.

1. $A_{13}(-3)$ **2.** $A_{21}(-1)$, $A_{23}(-2)$ **3.** $M_3(-1/14)$ **4.** $A_{31}(-1)$, $A_{32}(-2)$

Example 2.6.8

 \oplus

 \oplus

 \oplus

 \oplus

Continuing the previous example, use A^{-1} to solve the system

$$\begin{array}{rrrrr} x_1 + & x_2 + 3x_3 = 2, \\ & x_2 + 2x_3 = 1, \\ 3x_1 + 5x_2 - & x_3 = 4. \end{array}$$

Solution: The system can be written as

$$A\mathbf{x} = \mathbf{b},$$

where A is the matrix in the previous example, and

 $\mathbf{b} = \begin{bmatrix} 2\\1\\4 \end{bmatrix}.$

Since *A* is invertible, the system has a unique solution that can be written as $\mathbf{x} = A^{-1}\mathbf{b}$. Thus, from the previous example we have

	$\frac{11}{14}$	$-\frac{8}{7}$	$\frac{1}{14}$	2		$\frac{5}{7}$	
x =	$-\frac{3}{7}$	$\frac{5}{7}$	$\frac{1}{7}$	1	=	$\frac{3}{7}$	
	$\frac{3}{14}$	$\frac{1}{7}$.	$-\frac{1}{14}$	_ 4 _		$\frac{2}{7}$	

Consequently, $x_1 = \frac{5}{7}$, $x_2 = \frac{3}{7}$, and $x_3 = \frac{2}{7}$, so that the solution to the system is $\left(\frac{5}{7}, \frac{3}{7}, \frac{2}{7}\right)$.

We now return to more theoretical information pertaining to the inverse of a matrix.

Properties of the Inverse

The inverse of an $n \times n$ matrix satisfies the properties stated in the following theorem, which should be committed to memory:

Theorem 2.6.9

1.
$$A^{-1}$$
 is invertible and $(A^{-1})^{-1} = A$

Let A and B be invertible $n \times n$ matrices. Then

2. *AB* is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

3. A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$.

 \oplus

 \oplus

 \oplus

 \oplus

Proof The proof of each result consists of verifying that the appropriate matrix products yield the identity matrix.

1. We must verify that

 $A^{-1}A = I_n$ and $AA^{-1} = I_n$.

Both of these follow directly from Definition 2.6.2.

2. We must verify that

 $(AB)(B^{-1}A^{-1}) = I_n$ and $(B^{-1}A^{-1})(AB) = I_n$.

We establish the first equality, leaving the second equation as an exercise. We have

$$(AB)(B^{-1})(A^{-1}) = A(BB^{-1})A^{-1} = AI_nA^{-1} = AA^{-1} = I_n.$$

3. We must verify that

$$A^{T}(A^{-1})^{T} = I_{n}$$
 and $(A^{-1})^{T}A^{T} = I_{n}$.

Again, we prove the first part, leaving the second part as an exercise.

First recall from Theorem 2.2.21 that $A^T B^T = (BA)^T$. Using this property with $B = A^{-1}$ yields

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I_{n}^{T} = I_{n}.$$

The proof of property 2 of Theorem 2.6.9 can easily be extended to a statement about invertibility of a product of an arbitrary finite number of matrices. More precisely, we have the following.

Corollary 2.6.10

Let A_1, A_2, \ldots, A_k be invertible $n \times n$ matrices. Then $A_1 A_2 \cdots A_k$ is invertible, and

$$(A_1A_2\cdots A_k)^{-1} = A_k^{-1}A_{k-1}^{-1}\cdots A_1^{-1}.$$

Proof The proof is left as an exercise (Problem 28).

Some Further Theoretical Results

Finally, in this section, we establish two results that will be required in Section 2.7 and also in a proof that arises in Section 3.2.

Theorem 2.6.11

Let A and B be $n \times n$ matrices. If $AB = I_n$, then both A and B are invertible and $B = A^{-1}$.

Proof Let **b** be an arbitrary column *n*-vector. Then, since $AB = I_n$, we have

$$A(B\mathbf{b}) = I_n \mathbf{b} = \mathbf{b}.$$

Consequently, for *every* **b**, the system A**x** = **b** has the solution **x** = B**b**. But this implies that rank(A) = n. To see why, suppose that rank(A) < n, and let A^{*} denote a row-echelon form of A. Note that the last row of A^{*} is zero. Choose **b**^{*} to be any column

Fina

page 168 \oplus

 \oplus

 \oplus

2007/2/16

"main"

n-vector whose last component is nonzero. Then, since rank(A) < n, it follows that the system

$$A^*\mathbf{x} = \mathbf{b}^*$$

is inconsistent. But, applying to the augmented matrix $[A^* \mathbf{b}^*]$ the inverse row operations that reduced A to row-echelon form yields $[A \mathbf{b}]$ for some **b**. Since $A\mathbf{x} = \mathbf{b}$ has the same solution set as $A^*\mathbf{x} = \mathbf{b}^*$, it follows that $A\mathbf{x} = \mathbf{b}$ is inconsistent. We therefore have a contradiction, and so it must be the case that rank(A) = n, and therefore that A is invertible by Theorem 2.6.5.

We now establish that⁸ $A^{-1} = B$. Since $AB = I_n$ by assumption, we have

$$A^{-1} = A^{-1}I_n = A^{-1}(AB) = (A^{-1}A)B = I_nB = B,$$

as required. It now follows directly from property 1 of Theorem 2.6.9 that B is invertible with inverse A.

Corollary 2.6.12

Let A and B be $n \times n$ matrices. If AB is invertible, then both A and B are invertible.

Proof If we let $C = B(AB)^{-1}$ and D = AB, then

$$AC = AB(AB)^{-1} = DD^{-1} = I_n$$

It follows from Theorem 2.6.11 that A is invertible. Similarly, if we let $C = (AB)^{-1}A$, then

$$CB = (AB)^{-1}AB = I_n.$$

Once more we can apply Theorem 2.6.11 to conclude that *B* is invertible.

"main"

2007/2/16 page 169

 \oplus

 \oplus

 \oplus

Exercises for 2.6

Key Terms

Inverse, Invertible, Singular, Nonsingular, Gauss-Jordan technique.

Skills

 \oplus

 \oplus

 \oplus

 \oplus

- Be able to check directly whether or not two matrices *A* and *B* are inverses of each other.
- Be able to find the inverse of an invertible matrix via the Gauss-Jordan technique.
- Be able to use the inverse of a coefficient matrix of a linear system in order to solve the system.
- Know the basic properties related to how the inverse operation behaves with respect to itself, multiplication, and transpose (Theorem 2.6.9).

True-False Review

For Questions 1–10, decide if the given statement is **true** or **false**, and give a brief justification for your answer. If true, you can quote a relevant definition or theorem from the text. If false, provide an example, illustration, or brief explanation of why the statement is false.

1. An invertible matrix is also known as a singular matrix.

⁸Note that it now makes sense to speak of A^{-1} , whereas prior to proving in the preceding paragraph that A is invertible, it would not have been legal to use the notation A^{-1} .

- **2.** Every square matrix that does not contain a row of zeros is invertible.
- **3.** A linear system $A\mathbf{x} = \mathbf{b}$ with an $n \times n$ invertible coefficient matrix A has a unique solution.
- 4. If A is a matrix such that there exists a matrix B with $AB = I_n$, then A is invertible.
- 5. If A and B are invertible $n \times n$ matrices, then so is A + B.
- 6. If A and B are invertible $n \times n$ matrices, then so is AB.
- 7. If A is an invertible matrix such that $A^2 = A$, then A is the identity matrix.
- 8. If A is an $n \times n$ invertible matrix and B and C are $n \times n$ matrices such that AB = AC, then B = C.
- **9.** If A is a 5×5 matrix of rank 4, then A is not invertible.
- **10.** If A is a 6×6 matrix of rank 6, then A is invertible.

Problems

 \oplus

 \oplus

 \oplus

 \oplus

For Problems 1–3 verify by direct multiplication that the given matrices are inverses of one another.

1.
$$A = \begin{bmatrix} 2 & -1 \\ 3 & -1 \end{bmatrix}, A^{-1} = \begin{bmatrix} -1 & 1 \\ -3 & 2 \end{bmatrix}.$$

2. $A = \begin{bmatrix} 4 & 9 \\ 3 & 7 \end{bmatrix}, A^{-1} = \begin{bmatrix} 7 & -9 \\ -3 & 4 \end{bmatrix}.$
3. $A = \begin{bmatrix} 3 & 5 & 1 \\ 1 & 2 & 1 \\ 2 & 6 & 7 \end{bmatrix}, A^{-1} = \begin{bmatrix} 8 & -29 & 3 \\ -5 & 19 & -2 \\ 2 & -8 & 1 \end{bmatrix}.$

For Problems 4–16, determine A^{-1} , if possible, using the Gauss-Jordan method. If A^{-1} exists, check your answer by verifying that $AA^{-1} = I_n$.

4.
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$
.
5. $A = \begin{bmatrix} 1 & 1+i \\ 1-i & 1 \end{bmatrix}$.
6. $A = \begin{bmatrix} 1 & -i \\ -1+i & 2 \end{bmatrix}$.
7. $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.
8. $A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 11 \\ 4 & -3 & 10 \end{bmatrix}$.

9.	A =	$\begin{bmatrix} 3 & 5 & 1 \\ 1 & 2 & 1 \\ 2 & 6 & 7 \end{bmatrix}.$
10.	A =	$\left[\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{array}\right].$
11.	A =	$\begin{bmatrix} 4 & 2 & -13 \\ 2 & 1 & -7 \\ 3 & 2 & 4 \end{bmatrix}.$
12.	A =	$\begin{bmatrix} 1 & 2 & -3 \\ 2 & 6 & -2 \\ -1 & 1 & 4 \end{bmatrix}.$
13.	A =	$\begin{bmatrix} 1 & i & 2 \\ 1+i & -1 & 2i \\ 2 & 2i & 5 \end{bmatrix}.$
14.	A =	$\begin{bmatrix} 2 & 1 & 3 \\ 1 & -1 & 2 \\ 3 & 3 & 4 \end{bmatrix}.$
15.	A =	$\begin{bmatrix} 1 & -1 & 2 & 3 \\ 2 & 0 & 3 & -4 \\ 3 & -1 & 7 & 8 \\ 1 & 0 & 3 & 5 \end{bmatrix}.$
16.	A =	$\begin{bmatrix} 0 & -2 & -1 & -3 \\ 2 & 0 & 2 & 1 \\ 1 & -2 & 0 & 2 \\ 3 & -1 & -2 & 0 \end{bmatrix}.$
17.	Let	[2 −1 4]
		$A = \begin{bmatrix} 2 & 1 & 1 \\ 5 & 1 & 2 \\ 1 & -1 & 3 \end{bmatrix}$

Find the second column vector of A^{-1} without determining the whole inverse.

For Problems 18–22, use A^{-1} to find the solution to the given system.

18.
$$\begin{aligned} x_1 + 3x_2 &= 1, \\ 2x_1 + 5x_2 &= 3. \end{aligned}$$

19.
$$\begin{aligned} x_1 + x_2 - 2x_3 &= -2, \\ x_2 + x_3 &= 3, \\ 2x_1 + 4x_2 - 3x_3 &= 1 \end{aligned}$$

20.
$$\begin{array}{c} x_1 - 2ix_2 = 2, \\ (2-i)x_1 + 4ix_2 = -i. \end{array}$$

 $-\oplus$

 \oplus

The Inverse of a Square Matrix 171 2.6

The quantity Δ defined above is referred to as the determinant of A. We will investigate determinants in more detail in the next chapter.

35. Let A be an $n \times n$ matrix, and suppose that we have to solve the *p* linear systems

$$A\mathbf{x}_i = \mathbf{b}_i, \qquad i = 1, 2, \dots, p$$

where the \mathbf{b}_i are given. Devise an efficient method for solving these systems.

36. Use your method from the previous problem to solve the three linear systems

$$A\mathbf{x}_i = \mathbf{b}_i, \qquad i = 1, 2, 3$$

if

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 4 \\ 1 & 1 & 6 \end{bmatrix}, \qquad \mathbf{b}_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$
$$\mathbf{b}_2 = \begin{bmatrix} -1 \\ 2 \\ 5 \end{bmatrix}, \qquad \mathbf{b}_3 = \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}.$$

37. Let *A* be an $m \times n$ matrix with $m \leq n$.

(a) If rank(A) = m, prove that there exists a matrix B satisfying $AB = I_m$. Such a matrix is called a **right inverse** of *A*.

(**b**) If

$$A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 7 & 4 \end{bmatrix},$$

determine all right inverses of A.

 \diamond For Problems 38–39, reduce the matrix $[A \quad I_n]$ to reduced row-echelon form and thereby determine, if possible, the inverse of A.

38.
$$A = \begin{bmatrix} 5 & 9 & 17 \\ 7 & 21 & 13 \\ 27 & 16 & 8 \end{bmatrix}$$
.

39. *A* is a randomly generated 4×4 matrix.

◊ For Problems 40–42, use built-in functions of some form of technology to determine rank(A) and, if possible, A^{-1} .

_

40.
$$A = \begin{bmatrix} 3 & 5 & -7 \\ 2 & 5 & 9 \\ 13 & -11 & 22 \end{bmatrix}$$
.

21.
$$3x_1 + 4x_2 + 5x_3 = 1,$$

$$2x_1 + 10x_2 + x_3 = 1,$$

$$4x_1 + x_2 + 8x_3 = 1.$$

$$x_1 + x_2 + 2x_3 = 12.$$

 \oplus

 \oplus

 \oplus

 \oplus

22.

An $n \times n$ matrix A is called **orthogonal** if $A^T = A^{-1}$. For Problems 23-26, show that the given matrices are orthogonal.

23.
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
.
24. $A = \begin{bmatrix} \sqrt{3}/2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{bmatrix}$.
25. $A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$.
26. $A = \frac{1}{1+2x^2} \begin{bmatrix} 1 & -2x & 2x^2 \\ 2x & 1 & -2x^2 & -2x \\ 2x^2 & 2x & 1 \end{bmatrix}$.

27. Complete the proof of Theorem 2.6.9 by verifying the remaining properties in parts 2 and 3.

28. Prove Corollary 2.6.10.

For Problems 29-30, use properties of the inverse to prove the given statement.

- **29.** If A is an $n \times n$ invertible symmetric matrix, then A^{-1} is symmetric.
- **30.** If A is an $n \times n$ invertible *skew-symmetric* matrix, then A^{-1} is skew-symmetric.
- **31.** Let A be an $n \times n$ matrix with $A^4 = 0$. Prove that $I_n - A$ is invertible with

$$(I_n - A)^{-1} = I_n + A + A^2 + A^3.$$

- **32.** Prove that if A, B, C are $n \times n$ matrices satisfying $BA = I_n$ and $AC = I_n$, then B = C.
- **33.** If A, B, C are $n \times n$ matrices satisfying $BA = I_n$ and $CA = I_n$, does it follow that B = C? Justify your answer.
- **34.** Consider the general 2×2 matrix

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

if $\Delta \neq$

and let $\Delta = a_{11}a_{22} - a_{12}a_{21}$ with $a_{11} \neq 0$. Show that

$$\Delta = a_{11}a_{22} - a_{12}a_{21} \text{ with } a_{11} \neq 0.1$$

0,
$$A^{-1} = \frac{1}{\Delta} \begin{bmatrix} a_{22} - a_{12} \\ -a_{21} & a_{11} \end{bmatrix}.$$

"main"

2007/2/16 page 171

 \oplus

 \oplus

Matrices and Systems of Linear Equations 172 CHAPTER 2

41.
$$A = \begin{bmatrix} 7 & 13 & 15 & 21 \\ 9 & -2 & 14 & 23 \\ 17 & -27 & 22 & 31 \\ 19 & -42 & 21 & 33 \end{bmatrix}.$$

_

42. *A* is a randomly generated 5×5 matrix.

43. \diamond For the system in Problem 21, determine A^{-1} and use it to solve the system.

44. \diamond Consider the $n \times n$ **Hilbert** matrix

$$H_n = \left[\frac{1}{i+j-1}\right], \qquad 1 \le i, \quad j \le n.$$

"main"

2007/2/16 page 172

 \oplus

 \oplus

 \oplus

Æ

(a) Determine H_4 and show that it is invertible.

(**b**) Find
$$H_4^{-1}$$
 and use it to solve $H_4\mathbf{x} = \mathbf{b}$ if $\mathbf{b} = [2, -1, 3, 5]^T$.

2.7 **Elementary Matrices and the LU Factorization**

We now introduce some matrices that can be used to perform elementary row operations on a matrix. Although they are of limited computational use, they do play a significant role in linear algebra and its applications.

DEFINITION 2.7.1

Any matrix obtained by performing a single elementary row operation on the identity matrix is called an elementary matrix.

In particular, an elementary matrix is always a square matrix. In general we will denote elementary matrices by E. If we are describing a specific elementary matrix, then in keeping with the notation introduced previously for elementary row operations, we will use the following notation for the three types of elementary matrices:

Type 1: P_{ij} —permute rows *i* and *j* in I_n .

Type 2: $M_i(k)$ —multiply row *i* of I_n by the nonzero scalar *k*.

Type 3: $A_{ij}(k)$ —add k times row i of I_n to row j of I_n .

Example 2.7.2

Write all 2×2 elementary matrices.

Solution: From Definition 2.7.1 and using the notation introduced above, we have

We leave it as an exercise to verify that the $n \times n$ elementary matrices have the following structure:

 \oplus

 \oplus

 \oplus