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31. Determine the dimensions of Symn(R) and
Skewn(R), and show that

dim[Symn(R)] + dim[Skewn(R)] = dim[Mn(R)].
For Problems 32–34, a subspace S of a vector space V is
given. Determine a basis for S and extend your basis for S
to obtain a basis for V .

32. V = R
3, S is the subspace consisting of all points

lying on the plane with Cartesian equation

x + 4y − 3z = 0.

33. V = M2(R), S is the subspace consisting of all ma-
trices of the form [

a b

b a

]
.

34. V = P2, S is the subspace consisting of all polynomi-
als of the form (2a1+a2)x

2+(a1+a2)x+(3a1−a2).

35. Let S be a basis for Pn−1. Prove that S∪{xn} is a basis
for Pn.

36. Generalize the previous problem as follows. Let S be a
basis for Pn−1, and let p be any polynomial of degree
n. Prove that S ∪ {p} is a basis for Pn.

37. (a) What is the dimension of C
n as a real vector

space? Determine a basis.

(b) What is the dimension of C
n as a complex vector

space? Determine a basis.

4.7 Change of Basis

Throughout this section, we restrict our attention to vector spaces that are finite-dimensional.
If we have a (finite) basis for such a vector space V , then, since the vectors in a basis
span V , any vector in V can be expressed as a linear combination of the basis vectors.
The next theorem establishes that there is only one way in which we can do this.

Theorem 4.7.1 If V is a vector space with basis {v1, v2, . . . , vn}, then every vector v ∈ V can be written
uniquely as a linear combination of v1, v2, . . . , vn.

Proof Since v1, v2, . . . , vn span V , every vector v ∈ V can be expressed as

v = a1v1 + a2v2 + · · · + anvn, (4.7.1)

for some scalars a1, a2, . . . , an. Suppose also that

v = b1v1 + b2v2 + · · · + bnvn, (4.7.2)

for some scalars b1, b2, . . . , bn. We will show that ai = bi for each i, which will prove
the uniqueness assertion of this theorem. Subtracting Equation (4.7.2) from Equation
(4.7.1) yields

(a1 − b1)v1 + (a2 − b2)v2 + · · · + (an − bn)vn = 0. (4.7.3)

But {v1, v2, . . . , vn} is linearly independent, and so Equation (4.7.3) implies that

a1 − b1 = 0, a2 − b2 = 0, . . . , an − bn = 0.

That is, ai = bi for each i = 1, 2, . . . , n.

Remark The converse of Theorem 4.7.1 is also true. That is, if every vector v in
a vector space V can be written uniquely as a linear combination of the vectors in
{v1, v2, . . . , vn}, then {v1, v2, . . . , vn} is a basis for V . The proof of this fact is left as
an exercise (Problem 38).

Up to this point, we have not paid particular attention to the order in which the
vectors of a basis are listed. However, in the remainder of this section, this will become
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an important consideration. By an ordered basis for a vector space, we mean a basis in
which we are keeping track of the order in which the basis vectors are listed.

DEFINITION 4.7.2

If B = {v1, v2, . . . , vn} is an ordered basis for V and v is a vector in V , then the
scalars c1, c2, . . . , cn in the unique n-tuple (c1, c2, . . . , cn) such that

v = c1v1 + c2v2 + · · · + cnvn

are called the components of v relative to the ordered basis B = {v1, v2, . . . , vn}.
We denote the column vector consisting of the components of v relative to the ordered
basis B by [v]B , and we call [v]B the component vector of v relative to B.

Example 4.7.3 Determine the components of the vector v = (1, 7) relative to the ordered basis B =
{(1, 2), (3, 1)}.
Solution: If we let v1 = (1, 2) and v2 = (3, 1), then since these vectors are not
collinear, B = {v1, v2} is a basis for R

2. We must determine constants c1, c2 such that

c1v1 + c2v2 = v.

We write
c1(1, 2)+ c2(3, 1) = (1, 7).

This requires that
c1 + 3c2 = 1 and 2c1 + c2 = 7.

The solution to this system is (4,−1), which gives the components of v relative to the
ordered basis B = {v1, v2}. (See Figure 4.7.1.) Thus,

v = 4v1 − v2.

Therefore, we have

[v]B =
[

4
−1

]
. �

x

y

(4, 8)
(1, 7) 4v1

v1

v2

�v2

v = 4v1� v2

(1, 2)

(3, 1)

Figure 4.7.1: The components
of the vector v = (1, 7) relative to
the basis {(1, 2), (3, 1)}.

Remark In the preceding example, the component vector of v = (1, 7) relative to
the ordered basis B ′ = {(3, 1), (1, 2)} is

[v]B ′ =
[−1

4

]
.

Thus, even though the bases B and B ′ contain the same vectors, the fact that the vectors
are listed in different order affects the components of the vectors in the vector space.

Example 4.7.4 InP2, determine the component vector ofp(x) = 5+7x−3x2 relative to the following:

(a) The standard (ordered) basis B = {1, x, x2}.
(b) The ordered basis C = {1+ x, 2+ 3x, 5+ x + x2}.



“main”
2007/2/16
page 295

�

�

�

�

�

�

�

�

4.7 Change of Basis 295

Solution:

(a) The given polynomial is already written as a linear combination of the standard
basis vectors. Consequently, the components of p(x) = 5+ 7x − 3x2 relative to
the standard basis B are 5, 7, and −3. We write

[p(x)]B =

 5

7
−3


 .

(b) The components of p(x) = 5+ 7x − 3x2 relative to the ordered basis

C = {1+ x, 2+ 3x, 5+ x + x2}
are c1, c2, and c3, where

c1(1+ x)+ c2(2+ 3x)+ c3(5+ x + x2) = 5+ 7x − 3x2.

That is,

(c1 + 2c2 + 5c3)+ (c1 + 3c2 + c3)x + c3x
2 = 5+ 7x − 3x2.

Hence, c1, c2, and c3 satisfy

c1 + 2c2 + 5c3 = 5,
c1 + 3c2 + c3 = 7,

c3 = −3.

The augmented matrix of this system has reduced row-echelon form
 1 0 0 40

0 1 0 −10
0 0 1 −3


 ,

so that the system has solution (40,−10,−3), which gives the required compo-
nents. Hence, we can write

5+ 7x − 3x2 = 40(1+ x)− 10(2+ 3x)− 3(5+ x + x2).

Therefore,

[p(x)]C =

 40
−10
−3


 . �

Change-of-Basis Matrix
The preceding example naturally motivates the following question: If we are given two
different ordered bases for an n-dimensional vector space V , say

B = {v1, v2, . . . , vn} and C = {w1,w2, . . . ,wn}, (4.7.4)

and a vector v in V , how are [v]B and [v]C related? In practical terms, we may know
the components of v relative to B and wish to know the components of v relative to
a different ordered basis C. This question actually arises quite often, since different
bases are advantageous in different circumstances, so it is useful to be able to convert
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components of a vector relative to one basis to components relative to another basis.
The tool we need in order to do this efficiently is the change-of-basis matrix. Before
we describe this matrix, we pause to record the linearity properties satisfied by the
components of a vector. These properties will facilitate the discussion that follows.

Lemma 4.7.5 Let V be a vector space with ordered basis B = {v1, v2, . . . , vn}, let x and y be vectors
in V , and let c be a scalar. Then we have

(a) [x + y]B = [x]B + [y]B .

(b) [cx]B = c[x]B .

Proof Write

x = a1v1 + a2v2 + · · · + anvn and y = b1v1 + b2v2 + · · · + bnvn,

so that
x + y = (a1 + b1)v1 + (a2 + b2)v2 + · · · + (an + bn)vn.

Hence,

[x + y]B =



a1 + b1
a2 + b2

...

an + bn


 =



a1
a2
...

an


+



b1
b2
...

bn


 = [x]B + [y]B,

which establishes (a). The proof of (b) is left as an exercise (Problem 37).

DEFINITION 4.7.6

Let V be an n-dimensional vector space with ordered bases B and C given in (4.7.4).
We define the change-of-basis matrix from B to C by

PC←B =
[
[v1]C, [v2]C, . . . , [vn]C

]
. (4.7.5)

In words, we determine the components of each vector in the “old basis” B with
respect the “new basis” C and write the component vectors in the columns of the
change-of-basis matrix.

Remark Of course, there is also a change-of-basis matrix from C to B, given by

PB←C =
[
[w1]B, [w2]B, . . . , [wn]B

]
.

We will see shortly that the matrices PB←C and PC←B are intimately related.

Our first order of business at this point is to see why the matrix in (4.7.5) converts
the components of a vector relative to B into components relative to C. Let v be a vector
in V and write

v = a1v1 + a2v2 + · · · + anvn.
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Then

[v]B =



a1
a2
...

an


 .

Hence, using Theorem 2.2.9 and Lemma 4.7.5, we have

PC←B [v]B = a1[v1]C+a2[v2]C+· · ·+an[vn]C = [a1v1+a2v2+· · ·+anvn]C = [v]C.
This calculation shows that premultiplying the component vector of v relative to B by
the change of basis matrix PC←B yields the component vector of v relative to C:

[v]C = PC←B [v]B. (4.7.6)

Example 4.7.7 Let V = R
2, B = {(1, 2), (3, 4)}, C = {(7, 3), (4, 2)}, and v = (1, 0). It is routine to

verify that B and C are bases for V .

(a) Determine [v]B and [v]C .

(b) Find PC←B and PB←C .

(c) Use (4.7.6) to compute [v]C , and compare your answer with (a).

Solution:

(a) Solving (1, 0) = a1(1, 2)+ a2(3, 4), we find a1 = −2 and a2 = 1. Hence,

[v]B =
[−2

1

]
.

Likewise, setting (1, 0) = b1(7, 3) + b2(4, 2), we find b1 = 1 and b2 = −1.5.
Hence,

[v]C =
[

1
−1.5

]
.

(b) A short calculation shows that

[(1, 2)]C =
[−3

5.5

]
and [(3, 4)]C =

[−5
9.5

]
.

Thus, we have

PC←B =
[−3 −5

5.5 9.5

]
.

Likewise, another short calculation shows that

[(7, 3)]B =
[−9.5

5.5

]
and [(4, 2)]B =

[−5
3

]
.

Hence,

PB←C =
[−9.5 −5

5.5 3

]
.
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(c) We compute as follows:

PC←B [v]B =
[−3 −5

5.5 9.5

] [−2
1

]
=
[

1
−1.5

]
= [v]C,

as we found in part (a). �

The reader may have noticed a close resemblance between the two matrices PC←B
and PB←C computed in part (b) of the preceding example. In fact, a brief calculation
shows that

PC←BPB←C = I2 = PB←CPC←B.
The two change-of-basis matrices are inverses of each other. This turns out to be always
true. To see why, consider again Equation (4.7.6). If we premultiply both sides of (4.7.6)
by the matrix PB←C , we get

PB←C[v]C = PB←CPC←B [v]B. (4.7.7)

Rearranging the roles of B and C in (4.7.6), the left side of (4.7.7) is simply [v]B . Thus,

PB←CPC←B [v]B = [v]B.
Since this is true for any vector [v]B in R

n, this implies that

PB←CPC←B = In,
the n× n identity matrix. Likewise, a similar calculation shows that

PC←BPB←C = In.
Thus, we have proved that

The matrices PC←B and PB←C are inverses of one another.

Example 4.7.8 Let V = P2, and let B = {1, 1+ x, 1+ x + x2}, and C = {2+ x + x2, x + x2, x}. It is
routine to verify that B and C are bases for V . Find the change-of-basis matrix from B

to C, and use it to calculate the change-of-basis matrix from C to B.

Solution: We set 1 = a1(2+ x + x2)+ a2(x + x2)+ a3x. With a quick calculation,
we find that a1 = 0.5, a2 = −0.5, and a3 = 0. Next, we set 1 + x = b1(2 + x + x2)

+ b2(x + x2) + b3x, and we find that b1 = 0.5, b2 = −0.5, and b3 = 1. Finally, we
set 1 + x + x2 = c1(2 + x + x2) + c2(x + x2) + c3x, from which it follows that
c1 = 0.5, c2 = 0.5, and c3 = 0. Hence, we have

PC←B =

 a1 b1 c1
a2 b2 c2
a3 b3 c3


 =


 0.5 0.5 0.5
−0.5 −0.5 0.5

0 1 0


 .

Thus, we have

PB←C = (PC←B)−1 =

 1 −1 −1

0 0 1
1 1 0


 . �
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In much the same way that we showed above that the matrices PC←B and PB←C
are inverses of one another, we can make the following observation.

Theorem 4.7.9 Let V be a vector space with ordered bases A, B, and C. Then

PC←A = PC←BPB←A. (4.7.8)

Proof Using (4.7.6), for every v ∈ V , we have

PC←BPB←A[v]A = PC←B [v]B = [v]C = PC←A[v]A,
so that premultiplication of [v]A by either matrix in (4.7.8) yields the same result. Hence,
the matrices on either side of (4.7.8) are the same.

We conclude this section by using Theorem 4.7.9 to show how an arbitrary change-
of-basis matrix PC←B in R

n can be expressed as a product of change-of-basis matrices
involving the standard basis E = {e1, e2, . . . , en} of R

n. Let B = {v1, v2, . . . , vn} and
C = {w1,w2, . . . ,wn} be arbitrary ordered bases for R

n. Since [v]E = v for all column
vectors v in R

n, the matrices

PE←B = [[v1]E, [v2]E, . . . , [vn]E] = [v1, v2, . . . , vn]
and

PE←C = [[w1]E, [w2]E, . . . , [wn]E] = [w1,w2, . . . ,wn]
can be written down immediately. Using these matrices, together with Theorem 4.7.9,
we can compute the arbitrary change-of-basis matrix PC←B with ease:

PC←B = PC←EPE←B = (PE←C)−1PE←B.

Exercises for 4.7

Key Terms
Ordered basis, Components of a vector relative to an ordered
basis, Change-of-basis matrix.

Skills

• Be able to find the components of a vector relative to
a given ordered basis for a vector space V .

• Be able to compute the change-of-basis matrix for a
vector space V from one ordered basis B to another
ordered basis C.

• Be able to use the change-of-basis matrix from B to
C to determine the components of a vector relative to
C from the components of the vector relative to B.

• Be familiar with the relationship between the two
change-of-basis matrices PC←B and PB←C .

True-False Review
For Questions 1–8, decide if the given statement is true or
false, and give a brief justification for your answer. If true,
you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.

1. Every vector in a finite-dimensional vector space V
can be expressed uniquely as a linear combination of
vectors comprising a basis for V .

2. The change-of-basis matrix PB←C acts on the com-
ponent vector of a vector v relative to the basis C and
produces the component vector of v relative to the ba-
sis B.

3. A change-of-basis matrix is always a square matrix.

4. A change-of-basis matrix is always invertible.
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5. For any vectors v and w in a finite-dimensional vector
spaceV with basisB, we have [v−w]B = [v]B−[w]B .

6. If the bases B and C for a vector space V contain the
same set of vectors, then [v]B = [v]C for every vector
v in V .

7. If B and C are bases for a finite-dimensional vector
space V , and v and w are in V such that [v]B = [w]C ,
then v = w.

8. The matrix PB←B is the identity matrix for any basis
B for V .

Problems
For Problems 1–13, determine the component vector of the
given vector in the vector space V relative to the given or-
dered basis B.

1. V = R
2; B = {(2,−2), (1, 4)}; v = (5,−10).

2. V = R
2; B = {(−1, 3), (3, 2)}; v = (8,−2).

3. V = R
3; B = {(1, 0, 1), (1, 1,−1), (2, 0, 1)}; v =

(−9, 1,−8).

4. V = R
3; B = {(1,−6, 3), (0, 5,−1), (3,−1,−1)};

v = (1, 7, 7).

5. V = R
3; B = {(3,−1,−1), (1,−6, 3), (0, 5,−1)};

v = (1, 7, 7).

6. V = R
3; B = {(−1, 0, 0), (0, 0,−3), (0,−2, 0)};

v = (5, 5, 5).

7. V = P2; B = {x2 + x, 2 + 2x, 1}; p(x) = −4x2 +
2x + 6.

8. V = P2; B = {5 − 3x, 1, 1 + 2x2}; p(x) = 15 −
18x − 30x2.

9. V = P3; B = {1, 1+x, 1+x+x2, 1+x+x2+x3};
p(x) = 4− x + x2 − 2x3.

10. V = P3; B = {x3 + x2, x3 − 1, x3 + 1, x3 + x};
p(x) = 8+ x + 6x2 + 9x3.

11. V = M2(R);

B =
{[

1 1
1 1

]
,

[
1 1
1 0

]
,

[
1 1
0 0

]
,

[
1 0
0 0

]}
;

A =
[−3 −2
−1 2

]
.

12. V = M2(R);

B =
{[

2 −1
3 5

]
,

[
0 4
−1 1

]
,

[
1 1
1 1

]
,

[
3 −1
2 5

]}
;

A =
[−10 16
−15 −14

]
.

13. V = M2(R);

B =
{[−1 1

0 1

]
,

[
1 3
−1 0

]
,

[
1 0
1 2

]
,

[
0 −1
2 3

]}
;

A =
[

5 6
7 8

]
.

14. Let v1 = (0, 6, 3), v2 = (3, 0, 3), and v3 =
(6,−3, 0). Determine the component vector of an ar-
bitrary vector v = (x, y, z) relative to the ordered
basis {v1, v2, v3}.

15. Let p1(x) = 1 + x, p2(x) = x(x − 1), and p3(x) =
1+ 2x2. Determine the component vector of an arbi-
trary polynomial p(x) = a0 + a1x + a2x

2 relative to
the ordered basis {p1, p2, p3}.

For Problems 16–25, find the change-of-basis matrix PC←B
from the given ordered basis B to the given ordered basis C
of the vector space V .

16. V = R
2; B = {(9, 2), (4,−3)}; C = {(2, 1),

(−3, 1)}.
17. V = R

2; B = {(−5,−3), (4, 28)}; C = {(6, 2),
(1,−1)}.

18. V = R
3; B = {(2,−5, 0), (3, 0, 5), (8,−2,−9)};

C = {(1,−1, 1), (2, 0, 1), (0, 1, 3)}.
19. V = R

3; B = {(−7, 4, 4), (4, 2,−1), (−7, 5, 0)};
C = {(1, 1, 0), (0, 1, 1), (3,−1,−1)}.

20. V = P1; B = {7− 4x, 5x}; C = {1− 2x, 2+ x}.
21. V = P2;B = {−4+x−6x2, 6+2x2,−6−2x+4x2};

C = {1− x + 3x2, 2, 3+ x2}.
22. V = P3;

B = {−2+3x+4x2−x3, 3x+5x2+2x3,−5x2−5x3,

4+ 4x+ 4x2}; C = {1− x3, 1+ x, x+ x2, x2+ x3}.
23. V = P2;B = {2+x2,−1−6x+8x2,−7−3x−9x2};

C = {1+ x,−x + x2, 1+ 2x2}.
24. V = M2(R);

B =
{[

1 0
−1 −2

]
,

[
0 −1
3 0

]
,

[
3 5
0 0

]
,

[−2 −4
0 0

]}
;

C =
{[

1 1
1 1

]
,

[
1 1
1 0

]
,

[
1 1
0 0

]
,

[
1 0
0 0

]}
.
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25. V = M2(R); B = {E12, E22, E21, E11};
C = {E22, E11, E21, E12}.

For Problems 26–31, find the change-of-basis matrix PB←C
from the given basis C to the given basis B of the vector
space V .

26. V , B, and C from Problem 16.

27. V , B, and C from Problem 17.

28. V , B, and C from Problem 18.

29. V , B, and C from Problem 20.

30. V , B, and C from Problem 22.

31. V , B, and C from Problem 25.

For Problems 32–36, verify Equation (4.7.6) for the given
vector.

32. v = (−5, 3); V , B, and C from Problem 16.

33. v = (−1, 2, 0); V , B, and C from Problem 19.

34. p(x) = 6− 4x; V , B, and C from Problem 20.

35. p(x) = 5− x + 3x2; V , B, and C from Problem 21.

36. A =
[−1 −1
−4 5

]
; V , B, and C from Problem 24.

37. Prove part (b) of Lemma 4.7.5.

38. Prove that if every vector v in a vector space V can be
written uniquely as a linear combination of the vectors
in {v1, v2, . . . , vn}, then {v1, v2, . . . , vn} is a basis for
V .

39. Show that if B is a basis for a finite-dimensional vec-
tor space V , and C is a basis obtained by reordering
the vectors in B, then the matrices PC←B and PB←C
each contain exactly one 1 in each row and column,
and zeros elsewhere.

4.8 Row Space and Column Space

In this section, we consider two vector spaces that can be associated with any m × n
matrix. For simplicity, we will assume that the matrices have real entries, although the
results that we establish can easily be extended to matrices with complex entries.

Row Space
Let A = [aij ] be anm×n real matrix. The row vectors of this matrix are row n-vectors,
and therefore they can be associated with vectors in R

n. The subspace of R
n spanned by

these vectors is called the row space of A and denoted rowspace(A). For example, if

A =
[

2 −1 3
5 9 −7

]
,

then
rowspace(A) = span{(2,−1, 3), (5, 9,−7)}.

For a general m× n matrix A, how can we obtain a basis for rowspace(A)? By its
very definition, the row space of A is spanned by the row vectors of A, but these may
not be linearly independent, hence the row vectors of A do not necessarily form a basis
for rowspace(A). We wish to determine a systematic and efficient method for obtaining
a basis for the row space. Perhaps not surprisingly, it involves the use of elementary row
operations.

If we perform elementary row operations on A, then we are merely taking linear
combinations of vectors in rowspace(A), and we therefore might suspect that the row
space of the resulting matrix coincides with the row space of A. This is the content of
the following theorem.

Theorem 4.8.1 If A and B are row-equivalent matrices, then

rowspace(A) = rowspace(B).


