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For Problems 7–10, use the ideas in this section to determine
a basis for the subspace of R

n spanned by the given set of
vectors.

7. {(1,−1, 2), (5,−4, 1), (7,−5,−4)}.
8. {(1, 3, 3), (1, 5,−1), (2, 7, 4), (1, 4, 1)}.
9. {(1, 1,−1, 2), (2, 1, 3,−4), (1, 2,−6, 10)}.

10. {(1, 4, 1, 3), (2, 8, 3, 5), (1, 4, 0, 4), (2, 8, 2, 6)}.
11. Let

A =
[−3 9

1 −3

]
.

Find a basis for rowspace(A) and colspace(A). Make
a sketch to show each subspace in the xy-plane.

12. Let A =

 1 2 4

5 11 21
3 7 13


.

(a) Find a basis for rowspace(A) and colspace(A).

(b) Show that rowspace(A) corresponds to the plane
with Cartesian equation 2x+y− z = 0, whereas
colspace(A) corresponds to the plane with Carte-
sian equation 2x − y + z = 0.

13. Give examples to show how each type of elementary
row operation applied to a matrix can change the col-
umn space of the matrix.

14. Give an example of a square matrixAwhose row space
and column space have no nonzero vectors in common.

4.9 The Rank-Nullity Theorem

In Section 4.3, we defined the null space of a realm×nmatrix A to be the set of all real
solutions to the associated homogeneous linear system Ax = 0. Thus,

nullspace(A) = {x ∈ R
n : Ax = 0}.

The dimension of nullspace(A) is referred to as the nullity ofA and is denoted nullity(A).
In order to find nullity(A), we need to determine a basis for nullspace(A). Recall that if
rank(A) = r , then any row-echelon form ofA contains r leading ones, which correspond
to the bound variables in the linear system. Thus, there are n−r columns without leading
ones, which correspond to free variables in the solution of the system Ax = 0. Hence,
there are n− r free variables in the solution of the system Ax = 0. We might therefore
suspect that nullity(A) = n− r . Our next theorem, often referred to as the Rank-Nullity
Theorem, establishes that this is indeed the case.

Theorem 4.9.1 (Rank-Nullity Theorem)

For any m× n matrix A,

rank(A)+ nullity(A) = n. (4.9.1)

Proof If rank(A) = n, then by the Invertible Matrix Theorem, the only solution to
Ax = 0 is the trivial solution x = 0. Hence, in this case, nullspace(A) = {0}, so
nullity(A) = 0 and Equation (4.9.1) holds.

Now suppose rank(A) = r < n. In this case, there are n − r > 0 free variables
in the solution to Ax = 0. Let t1, t2, . . . , tn−r denote these free variables (chosen as
those variables not attached to a leading one in any row-echelon form of A), and let
x1, x2, . . . , xn−r denote the solutions obtained by sequentially setting each free variable
to 1 and the remaining free variables to zero. Note that {x1, x2, . . . , xn−r} is linearly inde-
pendent. Moreover, every solution toAx = 0 is a linear combination of x1, x2, . . . , xn−r :

x = t1x1 + t2x2 + · · · + tn−rxn−r ,
which shows that {x1, x2, . . . , xn−r} spans nullspace(A). Thus, {x1, x2, . . . , xn−r} is a
basis for nullspace(A), and nullity(A) = n− r .
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Example 4.9.2 If

A =

 1 1 2 3

3 4 −1 2
−1 −2 5 4


 ,

find a basis for nullspace(A) and verify Theorem 4.9.1.

Solution: We must find all solutions to Ax = 0. Reducing the augmented matrix of
this system yields

A# 1
∼


 1 1 2 3 0

0 1 −7 −7 0
0 −1 7 7 0


 2

∼


 1 1 2 3 0

0 1 −7 −7 0
0 0 0 0 0


 .

1. A12(−3), A13(1) 2. A23(1)

Consequently, there are two free variables, x3 = t1 and x4 = t2, so that

x2 = 7t1 + 7t2, x1 = −9t1 − 10t2.

Hence,

nullspace(A) = {(−9t1 − 10t2, 7t1 + 7t2, t1, t2) : t1, t2 ∈ R}
= {t1(−9, 7, 1, 0)+ t2(−10, 7, 0, 1) : t1, t2 ∈ R}
= span{(−9, 7, 1, 0), (−10, 7, 0, 1)}.

Since the two vectors in this spanning set are not proportional, they are linearly inde-
pendent. Consequently, a basis for nullspace(A) is {(−9, 7, 1, 0), (−10, 7, 0, 1)}, so that
nullity(A) = 2. In this problem,A is a 3×4 matrix, and so, in the Rank-Nullity Theorem,
n = 4. Further, from the foregoing row-echelon form of the augmented matrix of the
system Ax = 0, we see that rank(A) = 2. Hence,

rank(A)+ nullity(A) = 2+ 2 = 4 = n,
and the Rank-Nullity Theorem is verified. �

Systems of Linear Equations
We now examine the linear structure of the solution set to the linear system Ax =
b in terms of the concepts introduced in the last few sections. First we consider the
homogeneous case b = 0.

Corollary 4.9.3 Let A be an m× n matrix, and consider the corresponding homogeneous linear system
Ax = 0.

1. If rank(A) = n, then Ax = 0 has only the trivial solution, so nullspace(A) = {0}.
2. If rank(A) = r < n, thenAx = 0 has an infinite number of solutions, all of which

can be obtained from

x = c1x1 + c2x2 + · · · + cn−rxn−r , (4.9.2)

where {x1, x2, . . . , xn−r} is any linearly independent set of n − r solutions to
Ax = 0.
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Proof Note that part 1 is a restatement of previous results, or can be quickly deduced
from the Rank-Nullity Theorem. Now for part 2, assume that rank(A) = r < n.
By the Rank-Nullity Theorem, nullity(A) = n − r . Thus, from Theorem 4.6.10, if
{x1, x2, . . . , xn−r} is any set of n − r linearly independent solutions to Ax = 0, it is a
basis for nullspace(A), and so all vectors in nullspace(A) can be written as

x = c1x1 + c2x2 + · · · + cn−rxn−r ,
for appropriate values of the constants c1, c2, . . . , cn−r .

Remark The expression (4.9.2) is referred to as the general solution to the system
Ax = 0.

We now turn our attention to nonhomogeneous linear systems. We begin by formu-
lating Theorem 2.5.9 in terms of colspace(A).

Theorem 4.9.4 Let A be an m× n matrix and consider the linear system Ax = b.

1. If b is not in colspace(A), then the system is inconsistent.

2. If b ∈ colspace(A), then the system is consistent and has the following:

(a) a unique solution if and only if dim[colspace(A)] = n.

(b) an infinite number of solutions if and only if dim[colspace(A)] < n.

Proof If we write A in terms of its column vectors as A = [a1, a2, . . . , an], then the
linear system Ax = b can be written as

x1a1 + x2a2 + · · · + xnan = b.

Consequently, the linear system is consistent if and only if the vector b is a linear
combination of the column vectors ofA. Thus, the system is consistent if and only if b ∈
colspace(A). This proves part 1. Parts 2(a) and 2(b) follow directly from Theorem 2.5.9,
since rank(A) = dim[colspace(A)].

The set of all solutions to a nonhomogeneous linear system is not a vector space,
since, for example, it does not contain the zero vector, but the linear structure of
nullspace(A) can be used to determine the general form of the solution of a nonho-
mogeneous system.

Theorem 4.9.5 Let A be an m× n matrix. If rank(A) = r < n and b ∈ colspace(A), then all solutions
to Ax = b are of the form

x = c1x1 + c2x2 + · · · + cn−rxn−r + xp, (4.9.3)

where xp is any particular solution to Ax = b, and {x1, x2, . . . , xn−r} is a basis for
nullspace(A).

Proof Since xp is a solution to Ax = b, we have

Axp = b. (4.9.4)

Let x = u be an arbitrary solution to Ax = b. Then we also have

Au = b. (4.9.5)
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Subtracting (4.9.4) from (4.9.5) yields

Au− Axp = 0,

or equivalently,
A(u− xp) = 0.

Consequently, the vector u − xp is in nullspace(A), and so there exist scalars c1, c2,

. . . , cn−r such that

u− xp = c1x1 + c2x2 + · · · + cn−rxn−r ,
since {x1, x2, . . . , xn−r} is a basis for nullspace(A). Hence,

u = c1x1 + c2x2 + · · · + cn−rxn−r + xp,

as required.

Remark The expression given in Equation (4.9.3) is called the general solution to
Ax = b. It has the structure

x = xc + xp,

where
xc = c1x1 + c2x2 + · · · + cn−rxn−r

is the general solution of the associated homogeneous system and xp is one particular
solution of the nonhomogeneous system. In later chapters, we will see that this structure
is also apparent in the solution of all linear differential equations and in all linear systems
of differential equations. It is a result of the linearity inherent in the problem, rather than
the specific problem that we are studying. The unifying concept, in addition to the vector
space, is the idea of a linear transformation, which we will study in the next chapter.

Example 4.9.6 Let

A =

 1 1 2 3

3 4 −1 2
−1 −2 5 4


 and b =


 3

10
−4


 .

Verify that xp = (1, 1,−1, 1) is a particular solution to Ax = b, and use Theorem 4.9.5
to determine the general solution to the system.

Solution: For the given xp, we have

Axp =

 1 1 2 3

3 4 −1 2
−1 −2 5 4






1
1
−1

1


 =


 3

10
−4


 = b.

Consequently, xp = (1, 1,−1, 1) is a particular solution to Ax = b. Further, from
Example 4.9.2, a basis for nullspace(A) is {x1, x2}, where x1 = (−9, 7, 1, 0) and x2 =
(−10, 7, 0, 1). Thus, the general solution to Ax = 0 is

xc = c1x1 + c2x2,
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and therefore, from Theorem 4.9.5, the general solution to Ax = b is

x = c1x1 + c2x2 + xp = c1(−9, 7, 1, 0)+ c2(−10, 7, 0, 1)+ (1, 1,−1, 1),

which can be written as

x = (−9c1 − 10c2 + 1, 7c1 + 7c2 + 1, c1 − 1, c2 + 1). �

Exercises for 4.9

Skills

• For a given matrix A, be able to determine the rank
from the nullity, or the nullity from the rank.

• Know the relationship between the rank of a matrix A
and the consistency of a linear system Ax = b.

• Know the relationship between the column space of
a matrix A and the consistency of a linear system
Ax = b.

• Be able to formulate the solution set to a linear system
Ax = b in terms of the solution set to the correspond-
ing homogeneous linear equation.

True-False Review
For Questions 1–9, decide if the given statement is true or
false, and give a brief justification for your answer. If true,
you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.

1. For an m × n matrix A, the nullity of A must be at
least |m− n|.

2. If A is a 7 × 9 matrix with nullity(A) = 2, then
rowspace(A) = R

7.

3. If A is a 9 × 7 matrix with nullity(A) = 0, then
rowspace(A) = R

7.

4. The nullity of an n × n upper triangular matrix A
is simply the number of zeros appearing on the main
diagonal of A.

5. An n × n matrix A for which nullspace(A) =
colspace(A) cannot be invertible.

6. For all m × n matrices A and B, nullity(A + B) =
nullity(A)+ nullity(B).

7. For all n × n matrices A and B, nullity(AB) =
nullity(A)· nullity(B).

8. For all n × n matrices A and B, nullity(AB) ≥
nullity(B).

9. If xp is a solution to the linear system Ax = b, then
y+ xp is also a solution for any y in nullspace(A).

Problems
For Problems 1–4, determine the null space of A and verify
the Rank-Nullity Theorem.

1. A = [ 1 0 −6 −1
]
.

2. A =
[

2 −1
−4 2

]
.

3. A =

 1 1 −1

3 4 4
1 1 0


.

4. A =

 1 4 −1 3

2 9 −1 7
2 8 −2 6


.

For Problems 5–8, determine the nullity of A “by inspec-
tion” by appealing to the Rank-Nullity Theorem. Avoid
computations.

5. A =




2 −3
0 0
−4 6
22 −33


.

6. A =




1 3 −3 2 5
−4 −12 12 −8 −20

0 0 0 0 0
1 3 −3 2 6


.

7. A =




0 1 0
0 1 0
0 0 1
0 0 1


.

8. A = [ 0 0 0 −2
]
.
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For Problems 9–12, determine the solution set to Ax = b,
and show that all solutions are of the form (4.9.3).

9. A =

 1 3 −1

2 7 9
1 5 21


 ,b =


 4

11
10


.

10. A =

 2 −1 1 4

1 −1 2 3
1 −2 5 5


 ,b =


 5

6
13


.

11. A =




1 1 −2
3 −1 −7
1 1 1
2 2 −4


 ,b =



−3

2
0
−6


.

12. A =

 1 1 −1 5

0 2 −1 7
4 2 −3 13


 ,b =


 0

0
0


.

13. Show that a 3× 7 matrix A with nullity(A) = 4 must
have colspace(A) = R

3. Is rowspace(A) = R
3?

14. Show that a 6× 4 matrix A with nullity(A) = 0 must
have rowspace(A) = R

4. Is colspace(A) = R
4?

15. Prove that if rowspace(A) = nullspace(A), then A
contains an even number of columns.

16. Show that a 5×7 matrixAmust have 2 ≤ nullity(A) ≤
7. Give an example of a 5 × 7 matrix A with
nullity(A) = 2 and an example of a 5 × 7 matrix
A with nullity(A) = 7.

17. Show that 3×8 matrixAmust have 5 ≤ nullity(A) ≤
8. Give an example of a 3 × 8 matrix A with
nullity(A) = 5 and an example of a 3 × 8 matrix
A with nullity(A) = 8.

18. Prove that if A and B are n × n matrices and A is
invertible, then

nullity(AB) = nullity(B).

[Hint: Bx = 0 if and only if ABx = 0.]

4.10 The Invertible Matrix Theorem II

In Section 2.8, we gave a list of characterizations of invertible matrices (Theorem 2.8.1).
In view of the concepts introduced in this chapter, we are now in a position to add to the
list that was begun there.

Theorem 4.10.1 (Invertible Matrix Theorem)

LetAbe ann×nmatrix with real elements. The following conditions onA are equivalent:

(a) A is invertible.

(h) nullity(A) = 0.

(i) nullspace(A) = {0}.
(j) The columns of A form a linearly independent set of vectors in R

n.

(k) colspace(A) = R
n (that is, the columns of A span R

n).

(l) The columns of A form a basis for R
n.

(m) The rows of A form a linearly independent set of vectors in R
n.

(n) rowspace(A) = R
n (that is, the rows of A span R

n).

(o) The rows of A form a basis for R
n.

(p) AT is invertible.

Proof The equivalence of (a) and (h) follows at once from Theorem 2.8.1(d) and the
Rank-Nullity Theorem (Theorem 4.9.1). The equivalence of (h) and (i) is immediately
clear. The equivalence of (a) and (j) is immediate from Theorem 2.8.1(c) and Theo-
rem 4.5.14. Since the dimension of colspace(A) is simply rank(A), the equivalence of
(a) and (k) is immediate from Theorem 2.8.1(d). Next, from the definition of a basis,


