Final Exam

PUID:_____

- a) Legibly print your PUID above.
- b) Do not open this test booklet until you are directed to do so.
- c) This test is closed book and closed notes. You may not use a calculator, cell phone, ipad, computer, or any other electronic device during the exam.
- d) You will have 120 min. to complete the exam.
- e) Do not spend too much time on any one problem. Read them all through first and attack them in the order that allows you to make the most progress. Repeat: Budget your time wisely!
- f) Throughout the test, **show your work so that your reasoning is clear**. Otherwise no credit will be given.
- g) If you need extra room, use the back of the pages or the blank pages at the end of the exam. Just make sure I can follow your work.

Problem	Points	Grade
1	15	
2	15	
3	20	
4	15	
5	15	
6	20	
Total	100	

1 (15 pts). A sequence of measurable functions $\{f_n\}_{n\geq 1}$ on a measure space (X, \mathcal{F}, μ) is said to to **uniformly integrable** with respect to μ if

$$\lim_{M \to \infty} \left(\sup_{n \ge 1} \int_{\{|f_n| \ge M\}} |f_n| \, d\mu \right) = 0.$$

Prove that if $\{f_n\}_{n\geq 1}$ is uniformly integrable with respect to μ , then for any $\varepsilon > 0$ there exists a $\delta > 0$ such that if $\mu(A) < \delta$ then $\int_A |f_n| d\mu < \varepsilon$ for all $n \geq 1$.

(15 pts). Let

$$F(t) = \int_0^1 \sqrt{x} \sin(tx) \, dx, \qquad \forall t \in \mathbb{R}.$$

Prove that $F'(t) = \int_0^1 x^{3/2} \cos(tx) dx$ for every $t \ge \mathbb{R}$. (Make sure to justify all of your steps.)

- **3** (20 pts). For this problem, we are considering functions on \mathbb{R}^n with Lebesgue measure.
 - a) Let f_n be a sequence of functions such that $\sup_n ||f_n||_{\infty} \leq M$ for some $M < \infty$. If f is a function such that $\lim_{n\to\infty} ||f_n f||_p = 0$ for some p > 0, then prove that $||f||_{\infty} \leq M$ also.

(Continued on the next page...)

b) Give an example of a sequence of functions with $\inf_n \|f_n\|_{\infty} \ge M$ for some M > 0 and a function f such that $\lim_{n\to\infty} \|f_n - f\|_p = 0$ for all p > 0, but for which $\|f\|_{\infty} < M$.

4 (15 pts). Assume that $f, g \in L^1(\mathbb{R})$ are such that the functions xf(x) and xg(x) are also integrable. Prove that the function x(f * g)(x) is also integrable and that

$$\int x(f*g)(x) \, dx = \iint (x+y)f(x)g(y) \, (dx \, dy)$$

5 (15 pts). Suppose that ϕ is convex on (a, b) and continuous on [a, b]. Prove that

$$(b-a)\phi\left(\frac{a+b}{2}\right) \le \int_a^b \phi(x) \, dx \le \frac{b-a}{2}(\phi(a)+\phi(b)).$$

6 (20 pts). Let (X, \mathcal{F}, μ) be a measure space and let \mathcal{G} be a σ -algebra on another space Y. Assume that $f : (X, \mathcal{F}) \to (Y, \mathcal{G})$ is measurable (that is $f^{-1}(A) \in \mathcal{F}$ for all $A \in \mathcal{G}$), and then define the measure $\nu : \mathcal{G} \to [0, \infty]$ by

$$\nu(A) = \mu(f^{-1}(A)).$$

a) Prove that ν is a measure on (Y, \mathcal{G}) .

(Continued on the next page...)

b) Prove that if g is a non-negative measureable function on the measure space (Y, \mathcal{G}, ν) , then

$$\int_Y g \, d\nu = \int_X (g \circ f) \, d\mu.$$

(this page intentionally left blank)

(this page intentionally left blank)