Final Exam

PUID:

- a) Legibly print your PUID above.
- b) Do not open this test booklet until you are directed to do so.
- c) This test is closed book and closed notes. You may not use a calculator, cell phone, ipad, computer, or any other electronic device during the exam.
- d) You will have 120 min. to complete the exam.
- e) Do not spend too much time on any one problem. Read them all through first and attack them in the order that allows you to make the most progress. Repeat: Budget your time wisely!
- f) Throughout the test, show your work so that your reasoning is clear. Otherwise no credit will be given.
- g) If you need extra room, use the back of the pages or the blank pages at the end of the exam. Just make sure I can follow your work.

1 (15 pts). A sequence of measurable functions $\{f_n\}_{n\geq 1}$ on a measure space (X, \mathcal{F}, μ) is said to to uniformly integrable with respect to μ if

$$
\lim_{M\to\infty}\left(\sup_{n\geq 1}\int_{\{|f_n|\geq M\}}|f_n|\,d\mu\right)=0.
$$

Prove that if $\{f_n\}_{n\geq 1}$ is uniformly integrable with respect to μ , then for any $\varepsilon > 0$ there exists a $\delta > 0$ such that if $\mu(A) < \delta$ then $\int_A |f_n| d\mu < \varepsilon$ for all $n \ge 1$.

2 (15 pts). Let

$$
F(t) = \int_0^1 \sqrt{x} \sin(tx) \, dx, \qquad \forall t \in \mathbb{R}.
$$

Prove that $F'(t) = \int_0^1 x^{3/2} \cos(tx) dx$ for every $t \geq \mathbb{R}$. (Make sure to justify all of your steps.)

- 3 (20 pts). For this problem, we are considering functions on \mathbb{R}^n with Lebesgue measure.
	- a) Let f_n be a sequence of functions such that $\sup_n ||f_n||_{\infty} \leq M$ for some $M < \infty$. If f is a function such that $\lim_{n\to\infty} ||f_n - f||_p = 0$ for some $p > 0$, then prove that $||f||_{\infty} \leq M$ also.

(Continued on the next page...)

b) Give an example of a sequence of functions with $\inf_n ||f_n||_{\infty} \geq M$ for some $M > 0$ and a function f such that $\lim_{n\to\infty} ||f_n - f||_p = 0$ for all $p > 0$, but for which $||f||_{\infty} < M$.

4 (15 pts). Assume that $f, g \in L^1(\mathbb{R})$ are such that the functions $xf(x)$ and $xg(x)$ are also integrable. Prove that the function $x(f * g)(x)$ is also integrable and that

$$
\int x(f*g)(x) dx = \iint (x+y)f(x)g(y) (dx dy)
$$

5 (15 pts). Suppose that ϕ is convex on (a, b) and continuous on $[a, b]$. Prove that

$$
(b-a)\phi\left(\frac{a+b}{2}\right) \le \int_a^b \phi(x) \, dx \le \frac{b-a}{2}(\phi(a)+\phi(b)).
$$

6 (20 pts). Let (X, \mathcal{F}, μ) be a measure space and let G be a σ -algebra on another space Y. Assume that $f:(X,\mathcal{F})\to (Y,\mathcal{G})$ is measurable (that is $f^{-1}(A)\in \mathcal{F}$ for all $A\in \mathcal{G}$), and then define the measure $\nu : \mathcal{G} \to [0, \infty]$ by

$$
\nu(A) = \mu(f^{-1}(A)).
$$

a) Prove that ν is a measure on (Y, \mathcal{G}) .

(Continued on the next page...)

b) Prove that if g is a non-negative measureable function on the measure space (Y, \mathcal{G}, ν) , then

$$
\int_Y g \, d\nu = \int_X (g \circ f) \, d\mu.
$$

(this page intentionally left blank)

(this page intentionally left blank)