Qualifying Examination MA 553 January 4, 2024 Time: 2 hours

1	
2	
3	
4	
5	
6	
7	
Total	

Qualifying Examination

January 4, 2024

Your ID: _____

(20 pts) 1). Let p, q and r be three distinct prime numbers with p > qr. Let n be a positive integer. Show that every group G of order $O(G) = p^n qr$ is solvable. Conclude that every group of order 294 or 1210 is solvable.

Qualifying Examination

January 4, 2024

January 4, 2024

Your ID: _____

2). Let q be a prime number and let

$$f_q(x) = x^{q-1} + x^{q-2} + \dots + 1$$

- (20 pts) a) Suppose a prime number p divides $f_q(a)$ for some integer a. Prove that either p = q or $p \equiv 1 \pmod{q}$.
- (10 pts) b) Prove there are infinitely many primes of the form qb + 1, b an integer.

Qualifying Examination

January 4, 2024

3). (10 pts) a) Prove that $A = \mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.

(20 pts) b) Show that

$$A/(3+2\sqrt{-2}) \simeq \mathbb{Z}/17\mathbb{Z} := \mathbb{F}_{17}.$$

(15 pts) c) Show that $x^4 + 3$ is irreducible over \mathbb{F}_{17} and conclude that

$$f(x) = x^4 - 170x + 9 + 4\sqrt{-2} \in A[x]$$

is irreducible over A[x].

Qualifying Examination

January 4, 2024

Your ID: _

 $\mathrm{MA}~553$

4). Let n be an integer and let

$$f(x) = x^{3} - (n-3)x^{2} - nx - 1.$$

(10 pts) a) Show that f(x) is irreducible over $\mathbb{Q}[x]$.

- (15 pts) b) Show that if a is a root of f(x), then -1/(a+1) is also a root of f(x).
- (10 pts) c) Let K be the splitting field of f(x) over \mathbb{Q} . Show that $\operatorname{Gal}(K/\mathbb{Q})$ is cyclic of order 3. Conclude that all the roots of f(x) = 0 are real.

Qualifying Examination

January 4, 2024

- 5). Let $f(x) = (x^2 5)(x^3 2)$. Let K be the splitting field of f(x) over \mathbb{Q} .
 - (10 pts) a) Determine the Galois group $\operatorname{Gal}(K/\mathbb{Q})$.
 - (15 pts) b) Determine all subfields L of K such that L/\mathbb{Q} is of degree 2.

Qualifying Examination

January 4, 2024

Your ID: _____

6).

- (10 pts) a) Prove that $x^4 + 1$ is irreducible over $\mathbb{Z}[x]$ using Eisenstein Criterion.
- (10 pts) b) Let ζ_8 be a primitive 8th root of 1. Compute $[\mathbb{Q}(\zeta_8) : \mathbb{Q}]$.
- (10 pts) c) Show that $\mathbb{Q}(\zeta_8)/\mathbb{Q}$ is Galois and determine the Galois group through the map

$$\pi : \operatorname{Gal}(\mathbb{Q}(\zeta_8)/\mathbb{Q}) \longrightarrow \mathbb{Z}/8\mathbb{Z}$$
$$\sigma \longmapsto \pi(\sigma),$$

where $\sigma(\zeta_8) = \zeta_8^{\pi(\sigma)}$.

Qualifying Examination

January 4, 2024

Your ID: _____

7).

(15 pts) a) Using that $\mathbb{Z}[\sqrt{-2}]$ is a unique factorization domain show that

$$f(x) = x^3 - (1 + \sqrt{-2})$$

is irreducible over $\mathbb{Z}[\sqrt{-2}]$ and $\mathbb{Q}(\sqrt{-2})$.

(10 pts) b) Determine the Galois group of f(x) over $\mathbb{Q}(\sqrt{-2})$.

Qualifying Examination

January 4, 2024