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1).

(15 pts) a) Show that a non-abelian group G has an abelian quotient G/Z, Z the center of
G, if and only if [G : G] ⊂ Z. Here [G : G] is the commutatant of G (derived
group of G). Give an example of such a group.

(5 pts) b) Let G be a non-abelian group with a trivial center. Denote by Aut(G), the group
of automorphisms of G. Show that Aut(G) is not abelian.

(5 pts) c) Assume Aut(G) is solvable when G is any group. Show that G is solvable.
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2).

(5 pts) a) Show that f(x) = x3 − x− 1 is irreducible over Z.

(10 pts) b) Show that x+1 and x3−x−1 are relatively prime in Z[x]; i.e., the ideal generated
by them is Z[x].

(15 pts) c) Give a simpler description of the ring

Z[x]
/

((x+ 1)(x3 − x− 1))

.
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3). Let n ≥ 1 be a positive integer. Set

fn(x) = (x− 1)(x− 2) . . . (x− n)− 1.

(20 pts) a) Show that fn(x) is irreducible over Z for all n ≥ 1. Is it irreducible over Q?
Why?

(10 pts) b) Let p and m be two positive integers. Assume p is a prime. Let α be a root of
fp(x) and β one of fm(x). Let K = Q(α, β). What are possible values of [K : Q]?
Give reasons.
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4).

(10 pts) a) Let R be a unique factorization domain and let

f(x, y) = x9 − yx7 + yx3 + 7yx+ y ∈ R[x, y]

show that f(x, y) is irreducible over R[x, y].

(10 pts) b) Let K = F (x9/x7 − x3 − 7x − 1), where F is a field. Assume F is the field of
quotients of R[y]. Determine [F (x) : K].
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5).

(10 pts) a) Show that x4 + 1 is irreducible over Z[x] using Eisenstein Criterion.

(20 pts) b) Show that x4 + 1 ∈ Z[x] is reducible modulo every prime p. (Hint: For odd p,

x8 − 1 divides xp
2 − x.). Thus a polynomial could be irreducible over Z while it

is reducible modulo every prime.
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6).

(15 pts) a) Show that f(x) = x3−3x−1 is irreducible over Q and determine its Galois group.
Does f(x) have any complex roots? Justify your answer.

(Hint: For f(x) = x3 + px+ q, ∆ = −4p3 − 27q2.)

(15 pts) b) Show that g(x) = x3 − 4x + 2 is irreducible over Q and its Galois group over Q
is isomorphic to S3, but all its roots are real (prove this). Thus having only real
roots is not enough to determine the Galois group of an irreducible cubic over Q.
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7).

(8 pts) a) Using that Z[
√
−1] is a unique factorization domain (UFD) show that

x3 − (1 +
√
−1)

is irreducible over Z[
√
−1] and Q(

√
−1).

(7 pts) b) Show that the polynomial f(x) := x6 − 2x3 + 2 is irreducible over Q which has

α = 3

√

1 +
√
−1 and β = 3

√

1−
√
−1 among its roots. What is [Q(α) : Q]?

(10 pts) c) Determine the irreducible polynomial for a primitive 12th root of unity (12th
cyclotomic polynomial).

(10 pts) d) Let L = Q(α, β). Show that 3
√
2 ∈ L. Using part c) prove that 3

√
2 6∈ Q(α). What

is [L : Q]?
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