554 QUALIFYING EXAM, JAN 5, 2024

Attempt all questions. Time 2 hrs.

1. (5 + 10 pts)

- (a) Define the rank of a linear mapping between two vector spaces.
- (b) Let E, F, G, H be four finite dimensional vector spaces over a field k and $u: E \longrightarrow F, v: F \longrightarrow G, w: G \longrightarrow H$ be linear mappings. Prove that

$$\operatorname{rk}(v \circ u) + \operatorname{rk}(w \circ v) \leq \operatorname{rk}(v) + \operatorname{rk}(w \circ v \circ u).$$

- 2. (5 + 10 pts)
 - (a) State (but do not prove) the additive Jordan decomposition theorem for an endomorphism of a finite dimensional complex vector space.
 - (b) Let V be a finite dimensional complex vector space and $u, v \in \text{End}(V)$ such that $u \circ v = v \circ u$. Express the Jordan decomposition of $u \circ v$ in terms of the Jordan decompositions of u and v. Justify your answer.
- 3. (5 + 5 pts) Let V be a finite dimensional complex inner product space and $u \in \text{End}(V)$ and W a subspace of V closed under u.
 - (a) Prove that W^{\perp} is closed under the adjoint of u.
 - (b) Suppose that u is normal. Prove that W^{\perp} is closed under u.
- 4. (5 + 10 pts) Let V be a finite dimensional complex inner product space and $u \in \text{End}(V)$.
 - (a) Prove that there exist a unique pair of self-adjoint endomorphisms $v, w \in \text{End}(V)$ such that $u = v + \sqrt{-1}w$.
 - (b) Prove that a normal endomorphism is self-adjoint if and only if its eigenvalues are all real.
- 5. (5 + 5 pts) Let X be the complex matrix

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 4 \end{bmatrix}$$

Determine the rational canonical form and the Jordan canonical form of X.

- 6. (5 + 5 pts)
 - (a) When are two $n \times n$ complex matrices similar ?
 - (b) Let A be an $n \times n$ complex matrix with characteristic polynomial $(X 1)^n$. Prove that A is invertible and that A is similar to A^{-1} .
- 7. (5 + 10 pts) Let V be a finite dimensional complex vector space and $u \in \text{End}(V)$.
 - (a) Define the minimal polynomial of u.
 - (b) Suppose that $u^k = \mathrm{Id}_V$ for some positive integer k. Prove that u is diagonalizable.
- 8. (10 pts) Let V be an n-dimensional complex inner product space and let $u, v \in \text{End}(V)$ be two unitary transformations. Prove that $|\det(u+v)| \leq 2^n$.