554 QUALIFYING EXAM, AUG 9, 2024

Attempt all questions. Time 2 hrs.

- 1. (5 + 5 + 10 pts) Let V be a n-dimensional vector space over a field \mathbb{F} .
 - (a) Define the rank and the nullity of an endomorphism of V.
 - (b) If $\phi \in \text{End}(V)$, prove that $\operatorname{rank}(\phi) + \operatorname{nullity}(\phi) = n$.
 - (c) If $\phi, \psi \in \text{End}(V)$, then prove that

 $\operatorname{rank}(\phi) + \operatorname{rank}(\psi) - n \le \operatorname{rank}(\phi \circ \psi) \le \min(\operatorname{rank}(\phi), \operatorname{rank}(\psi)).$

- 2. (10 pts) Let V be a finite dimensional complex vector space and $\phi \in \text{End}(V)$. Suppose $\alpha_1, \ldots, \alpha_m$ are eigenvectors belonging to distinct eigenvalues of ϕ . Prove that $\alpha_1, \ldots, \alpha_m$ are linearly independent.
- 3. (5 + 5 pts)
 - (a) When are two $n \times n$ complex matrices similar ?
 - (b) Can an $n \times n$ complex matrix A be similar to the matrix $A + \text{Id}_n$?
- 4. (10 pts) Let $n \ge 2$, and A be an $n \times n$ complex matrix such that A is a Jordan block with 0's on the diagonal. What is the Jordan canonical form of A^2 ?
- 5. (10 pts) Let V be an n-dimensional complex inner product space. Suppose $A = \{\alpha_1, \ldots, \alpha_n\}$ is a basis for V. Prove that there exists a unique basis $B = \{\beta_1, \ldots, \beta_n\}$ such that $(\alpha_i, \beta_j) = \delta_{ij}$ for $1 \le i, j \le n$. (Here δ_{ij} is the Kronecker symbol.)
- 6. (5+5+10pts) Let V be a finite dimensional complex inner product vector space and $u \in \text{End}(V)$.
 - (a) Define the adjoint u^* of u?
 - (b) What does it mean to say that u is normal?
 - (c) Prove that for u to be normal it is necessary and sufficient that every subspace of V that is closed under u, is also closed under u^* .
- 7. (20 pts) Let V be the real vector space of polynomials of real polynomials in X of degree at most 3 equipped with the inner product given by

$$(f,g) = \int_0^1 f(X)g(X)dX.$$

Calculate the distance from the origin to the set of monic polynomials (i.e. polynomials with leading coefficient equal to 1).