Skip to main content

William Heinzer

William Heinzer Professor of Mathematics
  • 765 49-41980
  • MATH 636
heinzer@purdue.edu
Personal Website
Research Interest(s):
commutative algebra

Publications listed in MathSciNet

  • [1] Laszlo Fuchs, William Heinzer, and Bruce Olberding. Commutative ideal theory without finiteness conditions: irreducibility in the quotient field. In Abelian groups, rings, modules, and homological algebra, volume 249 of Lect. Notes Pure Appl. Math., pages 121-145. Chapman & Hall/CRC, Boca Raton, FL, 2006.
  • [2] Laszlo Fuchs, William Heinzer, and Bruce Olberding. Commutative ideal theory without finiteness conditions: completely irreducible ideals. Trans. Amer. Math. Soc., 358(7):3113-3131 (electronic), 2006.
  • [3] William Heinzer, Christel Rotthaus, and Sylvia Wiegand. Generic fiber rings of mixed power series/polynomial rings. J. Algebra, 298(1):248-272, 2006.
  • [4] Shiro Goto, William Heinzer, and Mee-Kyoung Kim. The leading ideal of a complete intersection of height two. J. Algebra, 298(1):238-247, 2006.
  • [5] William Heinzer, Christel Rotthaus, and Sylvia Wiegand. Integral closures of ideals in completions of regular local domains. In Commutative algebra, volume 244 of Lect. Notes Pure Appl. Math., pages 141-150. Chapman & Hall/CRC, Boca Raton, FL, 2006.
  • [6] William Heinzer, Mee-Kyoung Kim, and Bernd Ulrich. The Gorenstein and complete intersection properties of associated graded rings. J. Pure Appl. Algebra, 201(1-3):264-283, 2005.
  • [7] Laszlo Fuchs, William Heinzer, and Bruce Olberding. Commutative ideal theory without finiteness conditions: primal ideals. Trans. Amer. Math. Soc., 357(7):2771-2798 (electronic), 2005.
  • [8] William Heinzer and Bruce Olberding. Unique irredundant intersections of completely irreducible ideals. J. Algebra, 287(2):432-448, 2005.
  • [9] Catalin Ciuperca, William J. Heinzer, Louis J. Ratliff, Jr., and David E. Rush. Projectively equivalent ideals and Rees valuations. J. Algebra, 282(1):140-156, 2004.
  • [10] William Heinzer, Christel Rotthaus, and Sylvia Wiegand. Non-finitely generated prime ideals in subrings of power series rings. In Rings, modules, algebras, and abelian groups, volume 236 of Lecture Notes in Pure and Appl. Math., pages 333-341. Dekker, New York, 2004.
  • [11] Laszlo Fuchs, William Heinzer, and Bruce Olberding. Maximal prime divisors in arithmetical rings. In Rings, modules, algebras, and abelian groups, volume 236 of Lecture Notes in Pure and Appl. Math., pages 189-203. Dekker, New York, 2004.
  • [12] William Heinzer, Christel Rotthaus, and Sylvia Wiegand. Catenary local rings with geometrically normal formal fibers. In Algebra, arithmetic and geometry with applications (West Lafayette, IN, 2000), pages 497-510. Springer, Berlin, 2004.
  • [13] William Heinzer and Moshe Roitman. Well-centered overrings of an integral domain. J. Algebra, 272(2):435-455, 2004.
  • [14] William Heinzer, Christel Rotthaus, and Sylvia Wiegand. Examples of integral domains inside power series rings. In Commutative ring theory and applications (Fez, 2001), volume 231 of Lecture Notes in Pure and Appl. Math., pages 233-254. Dekker, New York, 2003.
  • [15] Shreeram S. Abhyankar, William J. Heinzer, and Avinash Sathaye. Translates of polynomials. In A tribute to C. S. Seshadri (Chennai, 2002), Trends Math., pages 51-124. Birkhäuser, Basel, 2003.
  • [16] William J. Heinzer and Mee-Kyoung Kim. Properties of the fiber cone of ideals in local rings. Comm. Algebra, 31(7):3529-3546, 2003.
  • [17] William J. Heinzer and David C. Lantz. Factorization of monic polynomials. Proc. Amer. Math. Soc., 131(4):1049-1052 (electronic), 2003.
  • [18] J. W. Brewer and W. J. Heinzer. On decomposing ideals into products of comaximal ideals. Comm. Algebra, 30(12):5999-6010, 2002.
  • [19] William J. Heinzer, Louis J. Ratliff, Jr., and David E. Rush. Basically full ideals in local rings. J. Algebra, 250(1):371-396, 2002.
  • [20] William Heinzer and Moshe Roitman. The homogeneous spectrum of a graded commutative ring. Proc. Amer. Math. Soc., 130(6):1573-1580 (electronic), 2002.
  • [21] William J. Heinzer, Aihua Li, Louis J. Ratliff, Jr., and David E. Rush. Monoidal extensions of a Cohen-Macaulay unique factorization domain. Trans. Amer. Math. Soc., 354(5):1811-1835 (electronic), 2002.
  • [22] William J. Heinzer, Louis J. Ratliff, Jr., and David E. Rush. Strongly irreducible ideals of a commutative ring. J. Pure Appl. Algebra, 166(3):267-275, 2002.
  • [23] William Heinzer, Christel Rotthaus, and Sylvia Wiegand. Intermediate rings between a local domain and its completion. II. Illinois J. Math., 45(3):965-979, 2001.
  • [24] William Heinzer and Moshe Roitman. Principal ideal domains and Euclidean domains having 1 as the only unit. Comm. Algebra, 29(11):5197-5208, 2001.
  • [25] Marco D'Anna, Anna Guerrieri, and William Heinzer. Invariants of ideals having principal reductions. Comm. Algebra, 29(2):889-906, 2001.
  • [26] William Heinzer, Christel Rotthaus, and Sylvia Wiegand. Building Noetherian and non-Noetherian integral domains using power series. In Ideal theoretic methods in commutative algebra (Columbia, MO, 1999), volume 220 of Lecture Notes in Pure and Appl. Math., pages 251-264. Dekker, New York, 2001.
  • [27] Marco D'Anna, Anna Guerrieri, and William Heinzer. Ideals having a one-dimensional fiber cone. In Ideal theoretic methods in commutative algebra (Columbia, MO, 1999), volume 220 of Lecture Notes in Pure and Appl. Math., pages 155-170. Dekker, New York, 2001.
  • [28] William Heinzer, Christel Rotthaus, and Sylvia Wiegand. Approximating discrete valuation rings by regular local rings. Proc. Amer. Math. Soc., 129(1):37-43, 2001.
  • [29] William Heinzer and Moshe Roitman. Generalized local rings and finite generation of powers of ideals. In Non-Noetherian commutative ring theory, volume 520 of Math. Appl., pages 287-312. Kluwer Acad. Publ., Dordrecht, 2000.
  • [30] William Heinzer, Christel Rotthaus, and Sylvia Weigand. Corrigendum to our paper: “Intermediate rings between a local domain and its completion” [Illinois J. Math. 43 (1999), no. 1, 19-46; MR1665712 (99m:13047)]. Illinois J. Math., 44(4):927-928, 2000.
  • [31] William Heinzer, Christel Rotthaus, and Sylvia Wiegand. Building Noetherian domains inside an ideal-adic completion. II. In Advances in commutative ring theory (Fez, 1997), volume 205 of Lecture Notes in Pure and Appl. Math., pages 411-419. Dekker, New York, 1999.
  • [32] William Heinzer, Christel Rotthaus, and Sylvia Wiegand. Noetherian domains inside a homomorphic image of a completion. J. Algebra, 215(2):666-681, 1999.
  • [33] William Heinzer, Christel Rotthaus, and Sylvia Wiegand. Intermediate rings between a local domain and its completion. Illinois J. Math., 43(1):19-46, 1999.
  • [34] Robert Gilmer and William Heinzer. On the embedding of a commutative ring in a local ring. Illinois J. Math., 43(1):192-210, 1999.
  • [35] Robert Gilmer, William Heinzer, and Moshe Roitman. Finite generation of powers of ideals. Proc. Amer. Math. Soc., 127(11):3141-3151, 1999.
  • [36] Robert Gilmer and William Heinzer. Prime ideals of finite height in polynomial rings. Houston J. Math., 24(1):9-20, 1998.
  • [37] William Heinzer, Christel Rotthaus, and Sylvia Wiegand. Building Noetherian domains inside an ideal-adic completion. In Abelian groups, module theory, and topology (Padua, 1997), volume 201 of Lecture Notes in Pure and Appl. Math., pages 279-287. Dekker, New York, 1998.
  • [38] William J. Heinzer, James A. Huckaba, and Ira J. Papick. m-canonical ideals in integral domains. Comm. Algebra, 26(9):3021-3043, 1998.
  • [39] William Heinzer, David Lantz, and Roger Wiegand. The residue fields of a zero-dimensional ring. J. Pure Appl. Algebra, 129(1):67-85, 1998.
  • [40] Alberto Corso, William Heinzer, and Craig Huneke. A generalized Dedekind-Mertens lemma and its converse. Trans. Amer. Math. Soc., 350(12):5095-5109, 1998.
  • [41] William Heinzer and Craig Huneke. The Dedekind-Mertens lemma and the contents of polynomials. Proc. Amer. Math. Soc., 126(5):1305-1309, 1998.
  • [42] William Heinzer, Christel Rotthaus, and Sylvia Wiegand. Noetherian rings between a semilocal domain and its completion. J. Algebra, 198(2):627-655, 1997.
  • [43] William Heinzer and David Lantz. Coefficient and stable ideals in polynomial rings. In Factorization in integral domains (Iowa City, IA, 1996), volume 189 of Lecture Notes in Pure and Appl. Math., pages 359-370. Dekker, New York, 1997.
  • [44] William Heinzer, L. J. Ratliff, Jr., and Kishor Shah. On the irreducible components of an ideal. Comm. Algebra, 25(5):1609-1634, 1997.
  • [45] William Heinzer, Christel Rotthaus, and Sylvia Wiegand. Idealwise algebraic independence for elements of the completion of a local domain. Illinois J. Math., 41(2):272-308, 1997.
  • [46] William Heinzer, Ahmad Mirbagheri, L. J. Ratliff, Jr., and Kishor Shah. Parametric decomposition of monomial ideals. II. J. Algebra, 187(1):120-149, 1997.
  • [47] William Heinzer and Craig Huneke. Gaussian polynomials and content ideals. Proc. Amer. Math. Soc., 125(3):739-745, 1997.
  • [48] Robert Gilmer and William Heinzer. Every local ring is dominated by a one-dimensional local ring. Proc. Amer. Math. Soc., 125(9):2513-2520, 1997.
  • [49] William Heinzer and Irena Swanson. Ideals contracted from 1-dimensional overrings with an application to the primary decomposition of ideals. Proc. Amer. Math. Soc., 125(2):387-392, 1997.
  • [50] R. Gilmer, W. Heinzer, and W. W. Smith. On the distribution of prime ideals within the ideal class group. Houston J. Math., 22(1):51-59, 1996.
  • [51] William J. Heinzer. Subrings of finite-dimensional rings. In Abelian groups and modules (Padova, 1994), volume 343 of Math. Appl., pages 277-282. Kluwer Acad. Publ., Dordrecht, 1995.
  • [52] William Heinzer, L. J. Ratliff, Jr., and Kishor Shah. On the embedded primary components of ideals. II. J. Pure Appl. Algebra, 101(2):139-156, 1995.
  • [53] Robert Gilmer and William Heinzer. Infinite products of zero-dimensional commutative rings. Houston J. Math., 21(2):247-259, 1995.
  • [54] Shreeram S. Abhyankar and William J. Heinzer. Intermediate rings. J. Algebra, 175(3):926-940, 1995.
  • [55] William J. Heinzer, David C. Lantz, and Sylvia M. Wiegand. Prime ideals in birational extensions of polynomial rings. II. In Zero-dimensional commutative rings (Knoxville, TN, 1994), volume 171 of Lecture Notes in Pure and Appl. Math., pages 241-261. Dekker, New York, 1995.
  • [56] William J. Heinzer. Dimensions of extension rings. In Zero-dimensional commutative rings (Knoxville, TN, 1994), volume 171 of Lecture Notes in Pure and Appl. Math., pages 57-64. Dekker, New York, 1995.
  • [57] William Heinzer and David Lantz. Ideal theory in two-dimensional regular local domains and birational extensions. Comm. Algebra, 23(8):2863-2880, 1995.
  • [58] William Heinzer, L. J. Ratliff, Jr., and Kishor Shah. Parametric decomposition of monomial ideals. I. Houston J. Math., 21(1):29-52, 1995.
  • [59] Shreeram S. Abhyankar and William J. Heinzer. Examples and counterexamples in commutative ring theory. J. Algebra, 172(3):744-763, 1995.
  • [60] Robert Gilmer and William Heinzer. Homomorphic images of an infinite product of zero-dimensional rings. Comm. Algebra, 23(5):1953-1965, 1995.
  • [61] William Heinzer, L. J. Ratliff, Jr., and Kishor Shah. On the embedded primary components of ideals. III. J. Algebra, 171(1):272-293, 1995.
  • [62] William Heinzer, L. J. Ratliff, Jr., and Kishor Shah. On the embedded primary components of ideals. IV. Trans. Amer. Math. Soc., 347(2):701-708, 1995.
  • [63] William Heinzer and Sylvia Wiegand. Prime ideals in polynomial rings over one-dimensional domains. Trans. Amer. Math. Soc., 347(2):639-650, 1995.
  • [64] Shreeram S. Abhyankar. Some remarks on the Jacobian question. Proc. Indian Acad. Sci. Math. Sci., 104(3):515-542, 1994. With notes by Marius van der Put and William Heinzer, Updated by Avinash Sathaye.
  • [65] Shreeram S. Abhyankar and William J. Heinzer. Ramification in infinite integral extensions. J. Algebra, 170(3):861-879, 1994.
  • [66] Robert Gilmer and William Heinzer. Imbeddability of a commutative ring in a finite-dimensional ring. Manuscripta Math., 84(3-4):401-414, 1994.
  • [67] William Heinzer, L. J. Ratliff, Jr., and Kishor Shah. On the embedded primary components of ideals. I. J. Algebra, 167(3):724-744, 1994.
  • [68] William Heinzer, David Lantz, and Sylvia Wiegand. Projective lines over one-dimensional semilocal domains and spectra of birational extensions. In Algebraic geometry and its applications (West Lafayette, IN, 1990), pages 309-325. Springer, New York, 1994.
  • [69] William J. Heinzer, David Lantz, and Sylvia M. Wiegand. Prime ideals in birational extensions of polynomial rings. In Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), volume 159 of Contemp. Math., pages 73-93. Amer. Math. Soc., Providence, RI, 1994.
  • [70] William J. Heinzer, Craig L. Huneke, and Judith D. Sally, editors. Commutative algebra: syzygies, multiplicities, and birational algebra, volume 159 of Contemporary Mathematics. American Mathematical Society, Providence, RI, 1994. Papers from the AMS-IMS-SIAM Summer Research Conference held at Mount Holyoke College, South Hadley, Massachusetts, July 4-10, 1992.
  • [71] William J. Heinzer and David C. Lantz. ACCP in polynomial rings: a counterexample. Proc. Amer. Math. Soc., 121(3):975-977, 1994.
  • [72] William Heinzer and Christel Rotthaus. Formal fibers and complete homomorphic images. Proc. Amer. Math. Soc., 120(2):359-369, 1994.
  • [73] William Heinzer, Bernard Johnston, David Lantz, and Kishor Shah. Coefficient ideals in and blowups of a commutative Noetherian domain. J. Algebra, 162(2):355-391, 1993.
  • [74] William Heinzer, Christel Rotthaus, and Judith D. Sally. Formal fibers and birational extensions. Nagoya Math. J., 131:1-38, 1993.
  • [75] William Heinzer, Bernard Johnston, and David Lantz. First coefficient domains and ideals of reduction number one. Comm. Algebra, 21(10):3797-3827, 1993.
  • [76] William Heinzer, Bernard Johnston, David Lantz, and Kishor Shah. The Ratliff-Rush ideals in a Noetherian ring: a survey. In Methods in module theory (Colorado Springs, CO, 1991), volume 140 of Lecture Notes in Pure and Appl. Math., pages 149-159. Dekker, New York, 1993.
  • [77] Robert Gilmer and William Heinzer. Primary ideals with finitely generated radical in a commutative ring. Manuscripta Math., 78(2):201-221, 1993.
  • [78] Robert Gilmer and William Heinzer. Artinian subrings of a commutative ring. Trans. Amer. Math. Soc., 336(1):295-310, 1993.
  • [79] Robert Gilmer, William Heinzer, and David Lantz. The Noetherian property in rings of integer-valued polynomials. Trans. Amer. Math. Soc., 338(1):187-199, 1993.
  • [80] Robert Gilmer and William Heinzer. The family of residue fields of a zero-dimensional commutative ring. J. Pure Appl. Algebra, 82(2):131-153, 1992.
  • [81] Robert Gilmer and William Heinzer. An application of Jónsson modules to some questions concerning proper subrings. Math. Scand., 70(1):34-42, 1992.
  • [82] William Heinzer, David Lantz, and Kishor Shah. The Ratliff-Rush ideals in a Noetherian ring. Comm. Algebra, 20(2):591-622, 1992.
  • [83] Robert Gilmer and William Heinzer. Zero-dimensionality in commutative rings. Proc. Amer. Math. Soc., 115(4):881-893, 1992.
  • [84] Robert Gilmer and William Heinzer. Products of commutative rings and zero-dimensionality. Trans. Amer. Math. Soc., 331(2):663-680, 1992.
  • [85] Shreeram S. Abhyankar and William J. Heinzer. Singular locus of an infinite integral extension. J. Algebra, 143(2):436-469, 1991.
  • [86] William Heinzer and Judith D. Sally. Extensions of valuations to the completion of a local domain. J. Pure Appl. Algebra, 71(2-3):175-185, 1991.
  • [87] Shreeram S. Abhyankar and William J. Heinzer. Derivativewise unramified infinite integral extensions. J. Algebra, 136(1):197-247, 1991.
  • [88] Shreeram S. Abhyankar, William Heinzer, and Sylvia Wiegand. On the compositum of two power series rings. Proc. Amer. Math. Soc., 112(3):629-636, 1991.
  • [89] David F. Anderson, David E. Dobbs, Paul M. Eakin, Jr., and William J. Heinzer. On the generalized principal ideal theorem and Krull domains. Pacific J. Math., 146(2):201-215, 1990.
  • [90] William Heinzer and David Lantz. Integral domains that lose ideals in overrings. Pacific J. Math., 145(2):223-238, 1990.
  • [91] Robert Gilmer, William Heinzer, David Lantz, and William Smith. The ring of integer-valued polynomials of a Dedekind domain. Proc. Amer. Math. Soc., 108(3):673-681, 1990.
  • [92] William Heinzer and David Lantz. Exceptional prime divisors of two-dimensional local domains. In Commutative algebra (Berkeley, CA, 1987), volume 15 of Math. Sci. Res. Inst. Publ., pages 279-304. Springer, New York, 1989.
  • [93] Robert Gilmer and William Heinzer. On Pic(D[α]) for a principal ideal domain D. Canad. Math. Bull., 32(1):114-116, 1989.
  • [94] William Heinzer and Sylvia Wiegand. Prime ideals in two-dimensional polynomial rings. Proc. Amer. Math. Soc., 107(3):577-586, 1989.
  • [95] William J. Heinzer and Ira J. Papick. Remarks on a remark of Kaplansky. Proc. Amer. Math. Soc., 105(1):1-9, 1989.
  • [96] Robert Gilmer and William Heinzer. On the imbedding of a direct product into a zero-dimensional commutative ring. Proc. Amer. Math. Soc., 106(3):631-636, 1989.
  • [97] William Heinzer and David Lantz. Jónsson extensions of one-dimensional semilocal domains. J. Algebra, 117(1):179-197, 1988.
  • [98] William J. Heinzer and Ira J. Papick. The radical trace property. J. Algebra, 112(1):110-121, 1988.
  • [99] Robert Gilmer and William Heinzer. On Jónsson algebras over a commutative ring. J. Pure Appl. Algebra, 49(1-2):133-159, 1987.
  • [100] Paul M. Eakin, Jr., William Heinzer, Daniel Katz, and L. J. Ratliff, Jr. Note on ideal-transforms, Rees rings, and Krull rings. J. Algebra, 110(2):407-419, 1987.
  • [101] Robert Gilmer and William Heinzer. Jónsson ω0-generated algebraic field extensions. Pacific J. Math., 128(1):81-116, 1987.
  • [102] William Heinzer, Craig Huneke, and Judith D. Sally. A criterion for spots. J. Math. Kyoto Univ., 26(4):667-671, 1986.
  • [103] Robert Gilmer and William Heinzer. On the cardinality of subrings of a commutative ring. Canad. Math. Bull., 29(1):102-108, 1986.
  • [104] William Heinzer and David Lantz. When is an N-ring Noetherian? J. Pure Appl. Algebra, 39(1-2):125-139, 1986.
  • [105] James Brewer, William Heinzer, and David Lantz. The pole assignability property in polynomial rings over GCD-domains. J. Algebra, 97(2):461-466, 1985.
  • [106] Robert Gilmer and William Heinzer. Finitely generated intermediate rings. J. Pure Appl. Algebra, 37(3):237-264, 1985.
  • [107] William Heinzer and David Lantz. Artinian modules and modules of which all proper submodules are finitely generated. J. Algebra, 95(1):201-216, 1985.
  • [108] William Heinzer and David Lantz. N-rings and accon colon ideals. J. Pure Appl. Algebra, 32(2):115-127, 1984.
  • [109] William Heinzer and David Lantz. Universally contracted ideals in commutative rings. Comm. Algebra, 12(9-10):1265-1289, 1984.
  • [110] William J. Heinzer. Polynomial rings over a Hilbert ring. Michigan Math. J., 31(1):83-88, 1984.
  • [111] Robert Gilmer and William Heinzer. On Jónsson modules over a commutative ring. Acta Sci. Math. (Szeged), 46(1-4):3-15, 1983.
  • [112] Robert Gilmer and William Heinzer. Cardinality of generating sets for modules over a commutative ring. Math. Scand., 52(1):41-57, 1983.
  • [113] Robert Gilmer and William Heinzer. Principal ideal rings and a condition of Kummer. J. Algebra, 83(1):285-292, 1983.
  • [114] William Heinzer and David Lantz. Commutative rings with acc on n-generated ideals. J. Algebra, 80(1):261-278, 1983.
  • [115] Robert Gilmer and William Heinzer. Noetherian pairs and hereditarily Noetherian rings. Arch. Math. (Basel), 41(2):131-138, 1983.
  • [116] William J. Heinzer. Valuation rings and simple transcendental field extensions. J. Pure Appl. Algebra, 26(2):189-190, 1982.
  • [117] Robert Gilmer and William Heinzer. Ideals contracted from a Noetherian extension ring. J. Pure Appl. Algebra, 24(2):123-144, 1982.
  • [118] T. T. Moh and W. Heinzer. On the Lüroth semigroup and Weierstrass canonical divisors. J. Algebra, 77(1):62-73, 1982.
  • [119] William Heinzer and David Lantz. The Laskerian property in commutative rings. J. Algebra, 72(1):101-114, 1981.
  • [120] William Heinzer. An essential integral domain with a nonessential localization. Canad. J. Math., 33(2):400-403, 1981.
  • [121] Robert Gilmer and William Heinzer. The quotient field of an intersection of integral domains. J. Algebra, 70(1):238-249, 1981.
  • [122] Robert Gilmer and William Heinzer. Some countability conditions on commutative ring extensions. Trans. Amer. Math. Soc., 264(1):217-234, 1981.
  • [123] James W. Brewer and William J. Heinzer. R Noetherian implies RX is a Hilbert ring. J. Algebra, 67(1):204-209, 1980.
  • [124] Robert Gilmer and William Heinzer. The Laskerian property, power series rings and Noetherian spectra. Proc. Amer. Math. Soc., 79(1):13-16, 1980.
  • [125] Robert Gilmer and William Heinzer. The Noetherian property for quotient rings of infinite polynomial rings. Proc. Amer. Math. Soc., 76(1):1-7, 1979.
  • [126] T. T. Moh and W. J. Heinzer. A generalized Lüroth theorem for curves. J. Math. Soc. Japan, 31(1):85-86, 1979.
  • [127] Robert Gilmer and William Heinzer. On the divisors of monic polynomials over a commutative ring. Pacific J. Math., 78(1):121-131, 1978.
  • [128] Jimmy T. Arnold, Robert Gilmer, and William Heinzer. Some countability conditions in a commutative ring. Illinois J. Math., 21(3):648-665, 1977.
  • [129] Robert Gilmer and William Heinzer. Cardinality of generating sets for ideals of a commutative ring. Indiana Univ. Math. J., 26(4):791-798, 1977.
  • [130] Robert Gilmer and William Heinzer. A non-Noetherian two-dimensional Hilbert domain with principal maximal ideals. Michigan Math. J., 23(4):353-362 (1977), 1976.
  • [131] William Heinzer. Hilbert integral domains with maximal ideals of preassigned height. J. Algebra, 29:229-231, 1974.
  • [132] J. W. Brewer and W. J. Heinzer. Associated primes of principal ideals. Duke Math. J., 41:1-7, 1974.
  • [133] J. W. Brewer and W. J. Heinzer. Ideals I of R[X] for which R[X]/I is R-projective. Proc. Amer. Math. Soc., 43:21-25, 1974.
  • [134] Paul Eakin and William Heinzer. A cancellation problem for rings. In Conference on Commutative Algebra (Univ. Kansas, Lawrence, Kan., 1972), pages 61-77. Lecture Notes in Math., Vol. 311. Springer, Berlin, 1973.
  • [135] William Heinzer. Noetherian intersections of integral domains. II. In Conference on Commutative Algebra (Univ. Kansas, Lawrence, Kan., 1972), pages 107-119. Lecture Notes in Math., Vol. 311. Springer, Berlin, 1973.
  • [136] J. W. Brewer, P. R. Montgomery, E. A. Rutter, and W. J. Heinzer. Krull dimension of polynomial rings. In Conference on Commutative Algebra (Univ. Kansas, Lawrence, Kan., 1972), pages 26-45. Lecture Notes in Math., Vol. 311. Springer, Berlin, 1973.
  • [137] William Heinzer and Jack Ohm. An essential ring which is not a v-multiplication ring. Canad. J. Math., 25:856-861, 1973.
  • [138] Paul Eakin and W. Heinzer. More noneuclidian PID's and Dedekind domains with prescribed class group. Proc. Amer. Math. Soc., 40:66-68, 1973.
  • [139] William Heinzer. Minimal primes of ideals and integral ring extensions. Proc. Amer. Math. Soc., 40:370-372, 1973.
  • [140] William Heinzer and Jack Ohm. Defining families for integral domains of real finite character. Canad. J. Math., 24:1170-1177, 1972.
  • [141] William Heinzer and Jack Ohm. The finiteness of I when R[X]/I is R-flat. II. Proc. Amer. Math. Soc., 35:1-8, 1972.
  • [142] Shreeram S. Abhyankar, William Heinzer, and Paul Eakin. On the uniqueness of the coefficient ring in a polynomial ring. J. Algebra, 23:310-342, 1972.
  • [143] William Heinzer. Locally affine ring extensions of a Noetherian domain. Proc. Amer. Math. Soc., 35:377-380, 1972.
  • [144] William Heinzer and Jack Ohm. Noetherian intersections of integral domains. Trans. Amer. Math. Soc., 167:291-308, 1972.
  • [145] William Heinzer and Jack Ohm. On the Noetherian-like rings of E. G. Evans. Proc. Amer. Math. Soc., 34:73-74, 1972.
  • [146] William Heinzer and Jack Ohm. Locally noetherian commutative rings. Trans. Amer. Math. Soc., 158:273-284, 1971.
  • [147] William Heinzer. Integral ring extensions and prime ideals of infinite rank. Proc. Amer. Math. Soc., 28:344-346, 1971.
  • [148] William Heinzer. Quotient overrings of integral domains. Mathematika, 17:139-148, 1970.
  • [149] William Heinzer. A note on rings with noetherian spectrum. Duke Math. J., 37:573-578, 1970.
  • [150] William Heinzer, Jack Ohm, and R. L. Pendleton. On integral domains of the form DP, P minimal. J. Reine Angew. Math., 241:147-159, 1970.
  • [151] Paul Eakin and William Heinzer. Non finiteness in finite dimensional Krull domains. J. Algebra, 14:333-340, 1970.
  • [152] Robert Gilmer and William Heinzer. On the number of generators of an invertible ideal. J. Algebra, 14:139-151, 1970.
  • [153] William Heinzer. On Krull overrings of a Noetherian domain. Proc. Amer. Math. Soc., 22:217-222, 1969.
  • [154] William Heinzer. Some remarks on complete integral closure. J. Austral. Math. Soc., 9:310-314, 1969.
  • [155] William Heinzer. On Krull overrings of an affine ring. Pacific J. Math., 29:145-149, 1969.
  • [156] Paul M. Eakin, Jr. and William J. Heinzer. Some open questions on minimal primes of a Krull domain. Canad. J. Math., 20:1261-1264, 1968.
  • [157] William Heinzer. Integral domains in which each non-zero ideal is divisorial. Mathematika, 15:164-170, 1968.
  • [158] Robert Gilmer and William Heinzer. Rings of formal power series over a Krull domain. Math. Z., 106:379-387, 1968.
  • [159] William J. Heinzer. J-noetherian integral domains with 1 in the stable range. Proc. Amer. Math. Soc., 19:1369-1372, 1968.
  • [160] Robert Gilmer and William Heinzer. Irredundant intersections of valuation rings. Math. Z., 103:306-317, 1968.
  • [161] Robert Gilmer and William Heinzer. On the existence of exceptional field extensions. Bull. Amer. Math. Soc., 74:545-547, 1968.
  • [162] Robert Gilmer and William Heinzer. Primary ideals and valuation ideals. II. Trans. Amer. Math. Soc., 131:149-162, 1968.
  • [163] Robert Gilmer and William J. Heinzer. Intersections of quotient rings of an integral domain. J. Math. Kyoto Univ., 7:133-150, 1967.
  • [164] Robert W. Gilmer, Jr. and William J. Heinzer. Overrings of Prüfer domains. II. J. Algebra, 7:281-302, 1967.
  • [165] William J. Heinzer. Some properties of integral closure. Proc. Amer. Math. Soc., 18:749-753, 1967.
  • [166] Robert W. Gilmer, Jr. and William J. Heinzer. On the complete integral closure of an integral domain. J. Austral. Math. Soc., 6:351-361, 1966.

Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067

Phone: (765) 494-1901 - FAX: (765) 494-0548  Contact Us

© 2024 Purdue University | An equal access/equal opportunity university | Copyright Complaints | DOE Degree Scorecards

Trouble with this page? Accessibility issues? Please contact the College of Science.

Maintained by Science IT