MA 16200: Third Midterm Examination Fall 2024, Purdue University

Exam version: 01

Name:

PUID #: _____

Exam Instructions:

- Follow these instructions carefully. Failure to do so may result in your exam being invalidated and/or an academic integrity violation. All suspected violations of academic integrity will be reported to the Office of the Dean of Students.
- Mark the circle of your recitation section below. Write your name and PUID on the top of this cover page. **DO NOT WRITE ANYTHING ELSE** on this cover page.

	Sec	Time	TA Name	I	Sec	Time	TA Name
\bigcirc	206	7:30AM	Gage Bachmann	$\overline{\mathbf{O}}$	214	10:30AM	Claudia Phagan
\bigcirc	109	7:30AM	Lance Daley		113	11:30AM	Tausif Ahmed
\bigcirc	904	7:30AM	Luca Mossman		105	11:30AM	Otto Baier
\bigcirc	906	7:30AM	Michael Poole		115	12:30PM	Tausif Ahmed
\bigcirc	210	7:30AM	Ehan Shah		101	12:30PM	Alexis Cruz Castillo
\bigcirc	208	8:30AM	Gage Bachmann		103	1:30PM	Alexis Cruz Castillo
\bigcirc	111	8:30AM	Lance Daley		218	1:30PM	Leo Shen
\bigcirc	908	8:30AM	Luca Mossman		220	2:30PM	Leo Shen
\bigcirc	902	8:30AM	Michael Poole		117	3:30PM	Tifany Burnett
\bigcirc	212	8:30AM	Ehan Shah		204	3:30PM	Mohamad Mousa
\bigcirc	224	9:30AM	Niveditha Nerella		121	3:30PM	Juliet Raginsky
\bigcirc	216	9:30AM	Claudia Phagan		119	4:30PM	Tifany Burnett
\bigcirc	107	10:30AM	Otto Baier		202	4:30PM	Mohamad Mousa
\bigcirc	222	10:30AM	Niveditha Nerella	0	123	4:30PM	Juliet Raginsky

- This exam consists of 11 questions for a total of 100 points.
- You have exactly one hour to complete the exam.
- Do not open the exam booklet or start writing before the proctor signals the start of the exam.
- Write your PUID on every other page of the exam booklet. This will help us locate your test if the pages become separated. Only do this after the exam starts.
- Additional pages for scratch work can be found at the end of the booklet.
- Calculators, electronic devices, books, or notes are **NOT ALLOWED**.
- Students may not look at anybody else's exam, and may not communicate with anybody else except with their TA or instructor if there is a question.
- DO NOT DETACH ANY PAGES from the exam booklet.
- If you finish the exam before 8:55 pm, you may leave the room after turning in the exam booklet. You may not leave the room before 8:20 pm. If you don't finish before 8:55 pm, YOU MUST REMAIN SEATED until your TA comes and collects your exam booklet. You must stop working when the proctor signals the end of exam.

Multiple-choice Instructions:

• For multiple choice questions, fill the circles completely with a #2 **PENCIL** for your answer choices. If you need to change your answer choice, erase the mark completely.

• Partial credit will not be awarded for multiple choice questions.

Fill-in-the-blank Instructions:

- For fill-in-the-blank questions, write your answers in the provided text boxes. Answers written entirely or partially outside of the boxes will not be graded.
- Only write the final answer in text boxes. Intermediate steps and scratch work should be completed in the blank space below each question.
- Write all your answers in one line. Fractions of the form $\frac{X}{V}$ are okay to include.

DO:
$$10\pi$$
 $\frac{2x}{3} + \sin(x)$
DON'T: $5 \cdot 2\pi$ $\frac{2x}{3} + \sin(x)$ $\frac{2x}{3} - (-\sin(x))}{-\frac{2x}{3} + \sin(x)}$ $\frac{\frac{2x}{3}}{-\frac{2x}{3} + \sin(x)}$

• Partial credit will not be awarded for individual answer boxes. You may get partial credit for fill-in-the-blank questions if there are multiple text boxes in one question.

Common Maclaurin series:

$$\begin{aligned} e^x &= 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots &= \sum_{k=0}^{\infty} \frac{x^k}{k!}, & \text{for } -\infty < x < \infty \\ \sin(x) &= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots &= \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}, & \text{for } -\infty < x < \infty \\ \cos(x) &= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots &= \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}, & \text{for } -\infty < x < \infty \\ \ln(1+x) &= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots &= \sum_{k=0}^{\infty} \frac{(-1)^{k+1} x^k}{k!}, & \text{for } -1 < x \le 1 \\ \arctan(x) &= x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots &= \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{2k+1}, & \text{for } -1 \le x \le 1 \end{aligned}$$

PUID #: _____

- 1. (8 points) What is the result of using the third-order Taylor polynomial for $f(x) = e^x$ centered at the origin to approximate the value of e^{-2} ?
 - \bigcirc (A) 1/3
 - \bigcirc (B) 19/3
 - \bigcirc (C) 0
 - O (D) 1
 - \bigcirc (E) -1/3

2. (8 points) Which of the following conclusion is correct if the ratio test is applied to the series

$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} \quad ?$$

- \bigcirc (A) The series is conditionally convergent because r = 1.
- \bigcirc (B) The series is absolutely convergent because r = 0.
- \bigcirc (C) The series is divergent because r = 4.
- \bigcirc (D) The series is absolutely convergent because r = 1/4.
- \bigcirc (E) The ratio test is inconclusive because r = 1.

3. (8 points) Which one of the following functions has the Maclaurin series

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} x^{2k} \quad ?$$

- $\begin{array}{c|c} (A) & 2\cos(x) \\ (B) & e^{-2x} \\ (C) & e^{-x/2} \\ (D) & e^{-x^2} \end{array}$
- \bigcirc (E) $\cos(2x)$

4. (8 points) What is the radius of convergence of the power series

$$\sum_{k=1}^{\infty} \frac{k+1}{k!} (x+1)^k \quad ?$$

PUID #: ______5. (8 points) Which one of the following is a power series for the function $f(x) = \frac{2}{2+x}$?

$$(A) \quad \sum_{k=0}^{\infty} \frac{1}{2^k} x^k$$
$$(B) \quad \sum_{k=0}^{\infty} \frac{(-1)^k}{2^k} x^k$$
$$(C) \quad (C) \quad \sum_{k=0}^{\infty} (-1)^k 2^k x^k$$
$$(D) \quad (D) \quad \sum_{k=0}^{\infty} (-1)^k x^{2k}$$
$$(C) \quad (E) \quad \sum_{k=0}^{\infty} 2^k x^k$$

6. (8 points) What is the third-order Taylor polynomial for $f(x) = \sin(x)$ centered at $a = \pi/3$?

$$O(A) \quad x - \frac{1}{6}x^{3}$$

$$O(B) \quad \frac{\sqrt{3}}{2} + \frac{1}{2}x - \frac{\sqrt{3}}{2}x^{2} - \frac{1}{2}x^{3}$$

$$O(C) \quad \frac{\sqrt{3}}{2} + \frac{1}{2}x - \frac{\sqrt{3}}{4}x^{2} - \frac{1}{12}x^{3}$$

$$O(D) \quad \frac{\sqrt{3}}{2} + \frac{1}{2}\left(x - \frac{\pi}{3}\right) - \frac{\sqrt{3}}{2}\left(x - \frac{\pi}{3}\right)^{2} - \frac{1}{2}\left(x - \frac{\pi}{3}\right)^{3}$$

$$O(E) \quad \frac{\sqrt{3}}{2} + \frac{1}{2}\left(x - \frac{\pi}{3}\right) - \frac{\sqrt{3}}{4}\left(x - \frac{\pi}{3}\right)^{2} - \frac{1}{12}\left(x - \frac{\pi}{3}\right)^{3}$$

7. (8 points) How many of the following convergence tests are applied correctly to detemine that the following series is divergent?

$$\sum_{n=2}^{\infty} \frac{2n}{n^2 - 1}$$

- The series is divergent by the limit comparison test with $\sum \frac{1}{n}$.
- The series is divergent by the **ratio test**.
- The series is divergent by the **integral test**.
- The series is divergent by the **divergence test**.
- \bigcirc (A) 0
- (B) 1
- \bigcirc (C) 2
- \bigcirc (D) 3
- \bigcirc (E) 4

8. (8 points) Evaluate the sum of the series

$$S = \sum_{n=1}^{\infty} n \left(\frac{1}{2}\right)^{n-1}.$$

Hint:
$$S = f(1/2)$$
 if $f(x) = \sum_{n=1}^{\infty} nx^{n-1}$.

- (A) 8
- \bigcirc (B) 2
- \bigcirc (C) 4
- \bigcirc (D) 1
- \bigcirc (E) The series is divergent.

PUID #: _____

9. (8 points) Which of the following conclusion is correct if the **root test** is applied to the series

$$\sum_{n=1}^{\infty} \left(\frac{n+1}{n}\right)^{-n^2} ?$$

- \bigcirc (A) The series is divergent because $\rho = e$.
- O (B) The root test is inconclusive because $\rho = 1$.
- \bigcirc (C) The series is absolutely convergent because $\rho = 0$.
- (D) The series is divergent because $\rho = \infty$.
- (E) The series is absolutely convergent because $\rho = 1/e$.

10. (8 points) If we use the second-order Taylor polynomial $p_2(x)$ for $f(x) = \ln(1+x)$ centered at the origin to approximate the value of $\ln(1.1)$, which one of the following statements is true about the remainder $R_2(0.1)$?

The derivatives of f(x) are listed below:

$$f'(x) = \frac{1}{1+x}$$
 $f''(x) = -\frac{1}{(1+x)^2}$ $f'''(x) = \frac{2}{(1+x)^3}$

 $\bigcirc (A) |R_2(0.1)| = \frac{|f''(c)|}{2!} \cdot |0.1|^2 \le \frac{1}{2!} \cdot (0.1)^2 \text{ for some } 0 \le c \le 0.1.$ $\bigcirc (B) |R_2(0.1)| = \frac{|f'''(c)|}{3!} \cdot |0.1|^3 \le \frac{2}{3!} \cdot (0.1)^3 \text{ for some } 0 \le c \le 0.1.$

$$\bigcirc (C) |R_2(0.1)| = \frac{|f''(c)|}{2!} \cdot |0.1|^2 \le \frac{1/(1.1)^2}{2!} \cdot (0.1)^2 \text{ for some } 0 \le c \le 0.1.$$

O (D)
$$|R_2(0.1)| = \frac{|f'''(c)|}{3!} \cdot |0.1|^3 \le \frac{2/(1.1)^3}{3!} \cdot (0.1)^3$$
 for some $0 \le c \le 0.1$.

 \bigcirc (E) None of the above.

11. This question is about the function f(x) represented by its Maclaurin series

$$f(x) = \sum_{k=0}^{\infty} \frac{k+1}{2^k} x^k.$$

Note: For all parts of this question, if the evaluation is infinite, write either $+\infty$ or $-\infty$ accordingly. If the evaluation does not exist and does not approach one of the two infinities, write "DNE". If the evaluation is $+\infty$ or $-\infty$, writing "DNE" will not receive credit.

(a) (6 points) The radius of convergence for the Maclaurin series of f(x) is R =

- (b) (4 points) The interval of convergence for the Maclaurin series of f(x) is
 - (A) (-R, R)(B) [-R, R](C) [-R, R](D) (-R, R]

Note: "R" in the choices above represents the radius of convergence from part (a).

(c) (5 points) The third derivative $f^{(3)}(0) =$

(d) (5 points) The definite integral
$$\int_0^1 f(x) dx =$$

DO NOT DETACH THIS PAGE FROM THE EXAM BOOKLET.

This page is left blank intentionally for scratch work.

DO NOT DETACH THIS PAGE FROM THE EXAM BOOKLET.

Do not write anything on this page.

Do not write anything on this page.

Do not write anything on this page.