MA 16500
EXAM 3 INSTRUCTIONS
VERSION 01
November 7, 2023

Your name _ Your TA's name \qquad
Student ID \# \qquad Section \# and recitation time \qquad

1. You must use a $\# 2$ pencil on the scantron sheet (answer sheet).
2. Check that the cover of your exam booklet is GREEN and that it has VERSION 01 on the top. Write 01 in the TEST/QUIZ NUMBER boxes and blacken in the appropriate spaces below.
3. On the scantron sheet, fill in your TA's name, i.e., the name of your recitation instructor (NOT the lecturer's name) and the course number.
4. Fill in your NAME and PURDUE ID NUMBER, and blacken in the appropriate spaces.
5. Fill in the four-digit SECTION NUMBER. Your section number is a 3 digit number. Put 0 at the front to make it a 4 digit number, and then fill it in.
6. Sign the scantron sheet.
7. Blacken your choice of the correct answer in the space provided for each of the questions $1-12$. While mark all your answers on the scantron sheet, you should show your work on the exam booklet. Although no partial credit will be given, any disputes about the grade or grading will be settled by examining your written work on the exam booklet.
8. There are 12 questions, 8 of which are worth 8 points and 4 of which are worth 9 points. The maximum possible score is 8 questions $\times 8$ points +4 questions $\times 9$ points $=100$ points.
9. NO calculators, electronic device, books, or papers are allowed. Use the back of the test pages for scrap paper.
10. After you finish the exam, turn in BOTH the scantron sheet and the exam booklet.
11. If you finish the exam before $7: 25$, you may leave the room after turning in the scantron sheet and the exam booklet. If you don't finish before $7: 25$, you should REMAIN SEATED until your TA comes and collects your scantron sheet and exam booklet.

Exam Policies

1. There is no individual seating. Just follow TAs' seating instructions.
2. Students may not open the exam until instructed to do so.
3. No student may leave in the first 20 min or in the last 5 min of the exam.
4. Students late for more than 20 min will not be allowed to take the exam; they will have to contact their lecturer within one day for permission to take a make-up exam.
5. After time is called, the students have to put down all writing instruments and remain in their seats, while the TAs/proctors will collect the scantron sheet and the exam booklet.
6. Any violation of the above rules may result in score of zero.

Rules Regarding Academic Dishonesty

1. You are not allowed to seek or obtain any kind of help from anyone to answer questions on the exam. If you have questions, consult only your instructor.
2. You are not allowed to look at the exam of another student. You may not compare answers with anyone else or consult another student until after you have finished your exam, handed it in to your instructor and left the room.
3. You may not consult notes, books, calculators. You may not handle cell phones or cameras, or any electronic devices until after you have finished your exam, handed it in to your instructor/proctor and left the room.
4. Anyone who violates these instructions will have committed an act of academic dishonesty. Penalties for academic dishonesty can be very severe and may include an F in the course. All cases of academic dishonesty will be reported immediately to the Office of the Dean of Students.

I have read and understand the exam policies and the rules regarding the academic dishonesty stated above:

STUDENT NAME: \qquad

STUDENT SIGNATURE:

Questions

1. (8 points) Let $f(x)$ be the function given by

$$
f(x)=4 \cos ^{3}(x)+21 \cos ^{2}(x)-24 \cos (x) .
$$

Find its absolute maximum value Max and absolute minimum Min on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
[HINT: $12 a^{2}+42 a-24=6(2 a-1)(a+4)$]
A. $\operatorname{Max}=1 \& \operatorname{Min}=0$
B. $\operatorname{Max}=1 \& \operatorname{Min}=-\frac{25}{4}$
C. $\operatorname{Max}=0 \quad \& \quad \operatorname{Min}=-\frac{25}{4}$
D. $\operatorname{Max}=41 \& \operatorname{Min}=1$
E. $\operatorname{Max}=\frac{63}{2}-\frac{21}{2} \sqrt{3} \& \operatorname{Min}=0$
2. Consider the function

$$
f(x)=x^{8}(x-3)^{4} .
$$

Find the value(s) of x where the function takes its
(i) local MAX, and
(ii) local MIN.
A. (i) local MAX at $x=0,3$, and
(ii) local MIN at $x=2$
B. (i) local MAX at $x=2$, and
(ii) local MIN at $x=0,3$
C. (i) local MAX at $x=0$, and
(ii) local MIN at $x=3$
D. (i) local MAX at $x=3$, and
(ii) local MIN at $x=0$
E. (i) local MAX at $x=0$, and
(ii) local MIN at $x=2$
3. Which of the following values is the estimate of $\sqrt[3]{7.988}$ using the linear approximation of the function $f(x)=\sqrt[3]{x}$ at $x=8$?
A. 1.997
B. 1.998
C. 1.999
D. 1.98
E. 1.99
4. (8 points) Compute the following limit

$$
\lim _{x \rightarrow 0} \frac{\ln \left(\frac{\sin x}{x}\right)}{x^{2}}
$$

A. 1
B. $1 / 3$
C. $-1 / 3$
D. $1 / 6$
E. $-1 / 6$
5. (8 points) Evaluate the limit

$$
\lim _{x \rightarrow \infty}\left(e^{x}+x\right)^{1 / x} .
$$

A. 0
B. 1
C. e
D. $1 / e$
E. ∞
6. (8 points) Evaluate the limit

$$
\lim _{x \rightarrow 0^{+}} x \cdot \ln \left(2+\frac{3}{x}\right) .
$$

A. 0
B. 1
C. $\ln 2$
D. $\frac{3}{2}$
E. $\frac{2}{3}$
7. (8 points) Determine the exact value of

$$
\cos ^{-1}\left(-\frac{2}{3}\right)-\sin ^{-1}\left(\frac{2}{3}\right) .
$$

A. 0
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$
E. $-\pi / 2$
8. (8 points) Which of the following best describes the graph of the function

$$
y=f(x)=-\frac{16 x}{x^{2}+16} ?
$$

A.

B.

C.

D.

E.

9. (9 points) A cone-shaped drinking cup is made from a circular piece of paper of fixed radius $R=5$ by cutting out a sector and joining the edges CA and CB. Find the maximum capacity of such a cup.

HINT: The volume V of a right circular cone with radius r and height h as illustrated in the picture above is given by

$$
V=\frac{1}{3} \pi r^{2} h .
$$

A. $\frac{25 \pi}{3}$
B. $\frac{25 \pi}{9}$
C. $\frac{10 \sqrt{3} \pi}{9}$
D. $\frac{50 \sqrt{3} \pi}{27}$
E. $\frac{250 \sqrt{3} \pi}{27}$
10. (9 points) Liz is standing on the bank of a 50 -foot wide river. An ice cream shop is located 100 feet down river on the opposite bank. Liz plans to get to the ice cream shop by a combination of swimming across the river to a point x feet down river on the opposite bank, and then jogging the rest of the way along the bank. She swims at a rate of $4 \mathrm{ft} / \mathrm{s}$ and jogs at a rate of $5 \mathrm{ft} / \mathrm{s}$. How many feet downstream of Liz on the opposite bank should she swim to reach the ice cream shop in the least amount of time?

A. 40 ft
B. 50 ft
C. 100 ft
D. $\frac{200}{3} \mathrm{ft}$
E. $\frac{400}{3} \mathrm{ft}$
11. (9 points) A farmer has 240 feet of fencing to build a rectangular pen to contain chickens. The pen needs to be in the shape of a rectangle with a straight divider in the middle that separates the pen into two congruent rectangles. What is the maximum possible area inside the pen?

A. $2400 \mathrm{ft}^{2}$
B. $3600 \mathrm{ft}^{2}$
C. $7200 \mathrm{ft}^{2}$
D. $4608 \mathrm{ft}^{2}$
E. $\frac{57600}{49} \mathrm{ft}^{2}$
12. (9 points) What is the smallest possible area of a triangle formed by the coordinate axes and a line tangent to the ellipse $x^{2}+4 y^{2}=4$ in the first quadrant?

A. $\sqrt{2}$
B. $2 \sqrt{2}$
C. 2
D. 4
E. 8

