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1. (8 Points) If log27(x) = 3 compute log3(x
4).

F A 36.

© B 12.

© C 6.

© D 9.

© E 9
4
.

Solution: Since log27(x) = 3 we have, since log3(x) is the inverse function of 3x, that

x = 273 = (33)3 = 39.

As such, using the exponent rule for the logarithm,

log3(x
4) = 4 log3(x) = 4 log3(3

9) = 4 · 9 = 36.
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2. (8 Points) What is the domain of the function f(x) =
1

x
+
√
−x2 + x+ 12?

F A [−3, 0) ∪ (0, 4].

© B (−3, 4).

© C All real numbers.

© D (−3, 0) ∪ (0, 4).

© E [−3, 4].

Solution: We have that
1

x
is not defined when x = 0 so 0 cannot be in our domain.

Moreover,
√
−x2 + x+ 12 is only defined when −x+ x+ 12 is nonnegative; since −x2 +

x+12 = −(x+3)(x−4), this occurs when x is in [−3, 4]. We note that f(x) is defined so

long as both of
1

x
and
√
−x2 + x+ 12 are. Putting these two facts together, we obtain

that our domain is [−3, 0) ∪ (0, 4].
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3. (8 Points) Find all θ in the interval [0, π] satisfying cos(2θ) =
1

2
.

© A θ = π
12
, 5π
12

.

© B θ = π
3
.

© C θ = π
6
, 5π

6
, 7π

6
, 11π

6
.

© D θ = π
3
, 5π

3
.

F E θ = π
6
, 5π

6
.

Solution: From facts about special triangles we know that cos(θ) = 1
2

when θ = π
3
,

Remembering that cos(θ) is positive in the first and fourth quadrants, we also note that
cos(θ) = 1

2
when θ = 5π

3
, and that these are the only solutions to cos(θ) = 1

2
when θ is in

[0, 2π]. As such, the solutions to cos(2θ) for θ in [0, π] are the solutions to θ is in [0, 2π]
divided by 2, notably they are θ = π

6
and θ = 5π

6
.
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4. (8 Points) Let f(x) = (x+ 1)2 + 9 with domain restricted to (−∞,−1] and let g(x) be
the inverse of f(x). What are the domain and range of g(x)?

© A The domain is (−∞,−1] and the range is [9,∞).

© B The domain is all real numbers and the range is (−∞,−1].

© C The domain is [9,∞) and range is [−1,∞).

© D The domain is (−∞,−1] and the range is all real numbers.

F E The domain is [9,∞) and the range is (−∞,−1].

Solution: The range of g(x) is the domain of f(x) which is given as (−∞,−1]. The
domain of g(x) is the range of f(x). Since f(x) is a parabola with vertex at (−1, 9),
when restricted to (−∞,−1] the range of f(x) is [9,∞). As such, the domain of g(x) is
[9,∞).
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5. (8 Points) Find all of the horizontal and vertical asymptotes of the function

f(x) =
(x+ 2)(x− 4)3

(2x− 3)3(x+ 5)2
.

© A Horizontal: y = 0; vertical: x = 3
2
.

F B Horizontal: y = 0; vertical: x = 3
2
and x = −5.

© C Horizontal: y = 0; vertical: x = −2 and x = 4.

© D Horizontal: y = 1
2
; vertical: x = 3

2
and x = −5.

© E Horizontal: y = 1
2
; vertical: x = −2 and x = 4.

Solution: Since f(x) is a rational function and the degree of the numerator of f(x) is
smaller than that of the denominator, we have that

lim
x→∞

f(x) = 0 = lim
x→−∞

f(x)

so that f(x) has the horizontal asymptote y = 0. Moreover, since f(x) has powers of
the terms 2x− 3 and x+ 5 in its denominator, its denominator consists solely of powers
of those terms, and that those terms are not cancelled by terms in the numerator, f(x)
has x = 3

2
and x = −5 as vertical asymptotes.
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6. (8 Points) Compute

lim
x→3−

1− x2

x− 3
.

© A −∞.

F B ∞.

© C 6.

© D −6.

© E 0.

Solution: For x smaller than but close to 3, for example for x in (2, 3), we have that

1− x2 and x− 3 are both negative so that the quantity
1− x2

x− 3
is positive for x in (2, 3).

Moreover, since lim
x→3

1− x2 = −8 6= 0 and lim
x→3

x− 3 = 0, the function f(x) =
1− x2

x− 3
must

have a vertical asymptote at x = 3. Since
1− x2

x− 3
is positive for x in (2, 3) we must

therefore have that

lim
x→3−

1− x2

x− 3
=∞.
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7. (8 Points) Compute

lim
x→0+

xx+2.

Hint : It may help to use the fact that

lim
x→0+

x ln(x) = 0.

© A 2.

© B −∞.

© C 1.

F D 0.

© E ∞.

Solution: We saw in class that lim
x→0+

xx = 0 since by composition of limits we have

lim
x→0+

xx = lim
x→0+

ex ln(x) = elimx→0+ x ln(x) = e0 = 1.

As such, we have by the product of limits law that

lim
x→0+

xx+2 = lim
x→0+

xx lim
x→0+

x2 = 1 · 0 = 0.
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8. (8 Points) Compute

lim
x→9+

√
x− 3

x− 5
√
x+ 6

.

© A 0.

F B 1.

© C ∞.

© D −∞.

© E 1
7
.

Solution: We note that
√
x− 3

x− 5
√
x+ 6

=

√
x− 3

(
√
x− 3)(

√
x− 2)

and hence, since when computing a limit as x → 9+ we may assume x 6= 9, we may
divide by the non-zero quantity

√
x− 3. We therefore have

lim
x→9+

√
x− 3

x− 5
√
x+ 6

= lim
x→9+

√
x− 3

(
√
x− 3)(

√
x− 2)

= lim
x→9+

1√
x− 2

=
1

3− 2
= 1.
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9. Let

f(x) =
1

x+ 2
.

(i) (6 Points) Use the definition of the derivative to compute f ′(−1). To obtain full
credit you must show and justify all of your work.

Solution: We use the definition and compute

f ′(−1) = lim
h→0

f(−1 + h)− f(−1)

h

= lim
h→0

1
1+h
− 1

h

= lim
h→0

1− (1 + h)

h(1 + h)

= lim
h→0

−h
h(1 + h)

= lim
h→0

−1

1 + h

=− 1
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(Note: this is a continuation of Problem 9.)

(ii) (6 Points) Find real numbers a and b such that y = ax+ b is the equation for the

tangent line to y =
1

x+ 2
at x = −1.

a= −1 b= 0

Solution: We use the slope-point formula to find a line with slope −1 which passes
through the point (−1, 1): we solve

y − 1

x+ 1
= −1

from which we obtain
y = −x

which is to say that a = −1 and b = 0.

(iii) (4 Points) Draw the tangent line to y =
1

x+ 2
at x = −1 on the following graph.
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10. Let g(x) be the piecewise function defined as follows:

g(x) =



x+ 3 if x ≤ −1

(x− 1)2 − 2 if − 1 < x < 2

−x+ 3 if 2 ≤ x < 5

x− 6 if 5 ≤ x

(i) (3 Points) Determine whether or not g(x) is continuous at x = −1. Indicate your
answer by filling in the appropriate circle. Show your work.

The function is: F continuous at x = −1. © not continuous at x = −1.

Solution: We compute

lim
x→−1−

g(x) = lim
x→−1−

x+ 3 = 2

and
lim

x→−1+
g(x) = lim

x→−1+
(x− 1)2 − 2 = 2

and thus we have that
lim
x→−1

g(x) = 2.

We further note that g(−1) = −1 + 3 = 2. Since g(−1) = lim
x→−1

g(x) we have that

g(x) is continuous at x = −1.
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(Note: this is a continuation of Problem 10.)

(ii) (3 Points) Determine whether or not g(x) is continuous at x = 2. Indicate your
answer by filling in the appropriate circle. Show your work.

The function is: © continuous at x = 2. F not continuous at x = 2.

Solution: We compute

lim
x→2−

g(x) = lim
x→2−

(x− 1)2 − 2 = −1

and
lim
x→2+

g(x) = lim
x→2+

−x+ 3 = 1

and thus we have that lim
x→2

g(x) does not exist. As such, g(x) is not continuous at

x = 2.

(iii) (3 Points) Determine whether or not g(x) is continuous at x = 5. Indicate your
answer by filling in the appropriate circle. Show your work.

The function is: © continuous at x = 5. F not continuous at x = 5.

Solution: We compute

lim
x→5−

g(x) = lim
x→5−

−x+ 3 = −2

and
lim
x→5+

g(x) = lim
x→5+

x− 6 = −1

and thus we have that lim
x→5

g(x) does not exist. As such, g(x) is not continuous at

x = 5.
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(Note: this is a continuation of Problem 10.)

(iv) (3 Points) Sketch the graph of y = g(x) on the following axes.

(v) (4 Points) Using your graph above, sketch the graph of y = g′(x) on the following
axes.
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