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1. (8 Points) On which of the following intervals is function f(x) = x3 + x2 − x both
decreasing and concave up?

√
A

(
−1

3
,
1

3

)
.

© B

(
−1,−1

3

)
.

© C

(
1

3
,∞

)
.

© D (−∞,−1).

© E

(
−1

3
,∞

)
.

Solution: We have that

f ′(x) = 3x2 + 2x− 1 = (3x− 1)(x + 1)

which is positive on (−∞,−1) ∪
(
1
3
,∞

)
and is negative on

(
−1, 1

3

)
and we have

f ′′(x) = 6x + 2

which is positive on
(
−1

3
,∞

)
and negative on

(
−∞,−1

3

)
. For f(x) to be decreasing and

concave up we need f ′(x) < 0 and f ′′(x) > 0; this occurs on the interval
(
−1

3
, 1
3

)
.
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2. (8 Points) Let f(x) be a function continuous on [2, 7] and differentiable on (2, 7) where
we have that f(2) = 1, f(4) = 7, f(5) = 5, f(7) = 1. Which of the following is not
necessarily a value of f ′(x) for some x in (2, 7)?

© A 0.
√

B 6.

© C 3.

© D
4

3
.

© E −2.

Solution: By the Mean Value Theorem, f ′(x) must take on the value 0 for some c in

(2, 7) since f(7)−f(2)
7−5 = 0; it similarly must take on the value 3 for some c in (2, 4), the

value 4
3

for some c in (2, 5) and the value −2 for some c in (4, 5), each due to applications
of the Mean Value Theorem. The only value which we don’t know for sure will necessarily
appear as a value for f ′(x) is 6.
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3. (8 Points) How many critical points does the function f(x) = |x3 − 3x| have?

© A 1.

© B 2.

© C 3.

© D 4.
√

E 5.

Solution: Let g(x) = x3 − 3x. The function f(x) is not differentiable at any point x
where g(x) = 0 and g′(x) 6= 0 since taking the absolute value in this case will cause the
graph of f(x) to have a “sharp point” at which it is not differentiable. This occurs at
the three points x = 0,±

√
3. We also see that f ′(x) = 0 at x = ±1. All together, f(x)

has five critical points.

A graph of y = f(x) is pictured below.
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4. (8 Points) Let f(x) be differentiable for all real numbers where

f ′(x) = (x + 4)2(x− 1)(x− 3)3(x− 5).

How many local maxima does f(x) have?

© A 0.
√

B 1.

© C 2.

© D 3.

© E 4.

Solution: We see that f ′(x) is negative for x < −4, negative for −4 < x < 1, positive
for 1 < x < 3, negative for 3 < x < 5, and positive for 5 < x. By the First Derivative
Test, the point x = 3 is a local maximum for f(x) and no other critical points for f(x)
are local maxima.
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5. (8 Points) How many local minima does the function f(x) = x4 − 4

3
x3 − 12x2 have?

© A 0.

© B 1.
√

C 2.

© D 3.

© E 4.

Solution: We compute

f ′(x) = 4x3 − 4x2 − 24x = 4x(x2 − x− 6) = 4x(x + 2)(x− 3)

so that f(x) has critical points at x = −2, 0, 3. Either of the First Derivative Test or
the Second Derivative Test shows that x = −2 and x = 3 are local minima and x = 0 is
a local maximum.
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6. (8 Points) A farmer needs to plant a rectangular field directly along a river. To protect
the field, they need to build a fence around three of its sides (the fourth side along
the river does not require a fence). Suppose the farmer has materials to build 1200m
of fencing. If ` denotes the length of the side of the fence parallel to the river and w
denotes the length of the sides of the fence perpendicular to the river, what dimensions
of the field will maximize its area?

© A ` = 200, w = 500.

© B ` = 400, w = 400.
√

C ` = 600, w = 300.

© D ` = 800, w = 200.

© E ` = 1000, w = 100.

Solution: We have that `+2w = 1200 is the given information and our desired informa-
tion is the maximum area where area is given by A = `w. The given information allows
us to note that ` = 1200 − 2w and hence that A = A(w) = 1200w − 2w2 as a function
of w. We solve A′(w) = 1200 − 4w and hence we have a critical point at w = 300. We
now note that both ` and w must be positive and hence we require that w is in [0, 600];
we moreover see that A(0) = 0 = A(600). As such, the maximum occurs at w = 300
since A(300) = 18, 000 which is greater than 0. As such, we must have w = 300 and
` = 1200− 2(300) = 600.
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7. (8 Points) Which of the following is the best linear approximation to y =
√
x at the

point x = 16.

© A y =
1

2
x + 2

© B y =
1

4
x

© C y =
1

8
x + 4

© D y =
1

2
x− 4

√
E y =

1

8
x + 2

Solution: We have f ′(x) =
1

2
√
x

so that f ′(16) =
1

8
. Thus the equation for the tangent

line f(x) is

L(x) = f(16) + f ′(16)(x− 16) = 4 +
1

8
(x− 16) =

1

8
x + 2.
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8. (8 Points) Compute lim
x→∞

(
1− 3

x

)x

.

© A e3.

© B ∞.

© C 0.
√

D e−3.

© E 1.

Solution: We have

lim
x→∞

(
1− 3

x

)x

= lim
x→∞

ex ln(1− 3
x) = elimx→∞ x ln(1− 3

x)

so long as the limit lim
x→∞

x ln

(
1− 3

x

)
exists. This limit is a “0 ·∞” indeterminate form

which may solved using L’Hopital’s Rule; we have

lim
x→∞

x ln

(
1− 3

x

)
= lim

x→∞

ln
(
1− 3

x

)
1
x

= lim
x→∞

1
1− 3

x

· −3 · −1
x2

−1
x2

= −3 lim
x→∞

1

1− 3
x

= −3

and therefore

lim
x→∞

(
1− 3

x

)x

= e−3.
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9. A company wants create a closed cardboard box which is shaped like a triangular prism
with a right triangle whose sides are in ratio 3 to 4 to 5 as its base and top. Let h denote
the height of the box and let s be such that the length of the sides of the triangular base
and top of the box are 3s, 4s and 5s, respectively. The diagram below gives a bottom
view of the box.

(i) (3 Points)

Write down a formula for the volume of the box in terms of h and s.

V = 6s2h

(ii) (3 Points)

Write down a formula for the surface area of the box in terms of h and s.

A = 12s2 + 12sh

(iii) (4 Points) The company wishes to build the box using 12 square metres of card-
board. Given this restriction, write a formula for the volume of the box in terms of
s. Show all of your work.

V (s) = 6s− 6s3

Solution: Since 12 = A = 12s2 + 12sh we have s2 + sh = 1 or h = 1
s
− s and thus

that

A = 6s2h = 6s2
(

1

s
− s

)
= 6s− 6s3.
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(Note: this is a continuation of Problem 9.)

(iv) (6 Points) If the box is to be built with 12 square metres of cardboard, find the
value of s which maximizes the box’s internal volume. Show all of your work.

s = 1√
3

Solution: We have V (s) = 6s−6s3 which must be positive and we require s itself to
be positive, so we need only care about s in [0, 1] and we see that V (0) = 0 = V (1).
We compute V ′(s) = 6− 18s2 which has the positive solution of s = 1√

3
; since

V

(
1√
3

)
=

6√
3
− 6

3
√

3
=

4√
3
> 0

we have that s = 1√
3

must be our desired maximum.
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10. Let f(x) =
1

x + 1
+

1

x− 1
.

(i) (2 Points) Determine if f(x) has any vertical asymptotes (write NONE if it has
none). Show your work.

The vertical asymptotes are x = 1 and x = −1.

(ii) (2 Points) Determine if f(x) has any horizontal asymptotes (write NONE if it has
none). Show your work.

The horizontal asymptote is y = 0.
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(Note: this is a continuation of Problem 10.)

(iii) (1 Point) Find all points x at which f(x) = 0.

f(x) = 0 for x = 0.

(write “NONE” if f(x) 6= 0 for any x)

(iv) (3 Points) Determine when f(x) is increasing and decreasing.

f(x) is increasing on N/A

(write “N/A” if the function does not increase on any interval)

f(x) is decreasing on (−∞,−1) ∪ (−1, 1) ∪ (1,∞).

(write “N/A” if the function does not decrease on any interval)

Solution: We compute

f ′(x) = − 1

(x + 1)2
− 1

(x− 1)2
= −2

x2 + 1

(x2 − 1)2

which is negative at all points at which it is defined (which is all points except
x = −1, 1).
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(Note: this is a continuation of Problem 10.)

(v) (3 Points) Determine when f(x) is concave up and concave down.

f(x) is concave up on (−1, 0) ∪ (1,∞)

(write “N/A” if the function is not concave up on any interval)

f(x) is concave down on (−∞,−1) ∪ (0, 1)

(write “N/A” if the function is not concave down on any interval)

Solution: We compute

f ′′(x) = 2
1

(x + 1)3
+ 2

1

(x− 1)3
= 4x

x2 + 3

(x2 − 1)3

which is positive on (−1, 0) ∪ (1,∞) and negative on (−∞,−1) ∪ (0, 1). This is
because the sign of x2 + 3 is always positive, the sign of 4x is positive for x > 0 and
negative for x < 0, and the sign of (x2 − 1)3 is positive for x in (−∞, 1) ∪ (1,∞)
and negative for x in (−1, 1). Putting all this together yields the result.

(vi) (1 Point) Find all inflection points of f(x).

f(x) has an inflection point at x = 0

(write “NONE” if f(x) has no inflection points)
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(Note: this is a continuation of Problem 10.)

(vii) (4 Points) Draw a rough graph of f(x) on the following set of axes indicating the
information you determined in parts (i)-(vi).
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(This page may be used for scratch work but work done here will not be graded.)
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