
Chapter 7

Kernels and quotients

Recall that homomorphism between groups f : G ! Q is a map which preserves
the operation and identity (which we denote by · and e). It need not be one to
one. The failure to be one to one is easy to measure.

Definition 7.1. Given a homomorphism between groups f : G ! Q, the kernel
ker f = {g 2 G | f(g) = e}.

Lemma 7.2. A homomorphism is one to one if and only if ker f = {e}.

The proof will be given as an exercise. The kernel is a special kind of
subgroup. It’s likely that you already encountered this notion in linear algebra
in the context of linear transformations. There it also called the kernel or
sometimes the null space.

Definition 7.3. A subgroup H ⇢ G is called normal if ghg�1 2 H for all
g 2 G and h 2 H. The operation h 7! ghg�1 is called conjugation of h by g. So
normality of H means that it is closed under conjugation by elements of G.

Proposition 7.4. Suppose that f : G ! Q is a homomorphism, then ker f is
a normal subgroup.

Proof. Let h1, h2 2 H and g 2 G. Then f(h1h2) = f(h1)f(h2) = e, f(h�1
1 ) = e,

f(gh1g�1) = f(g)f(g)�1 = e.

Here are some examples.

Example 7.5. If G is abelian, then any subgroup is normal.

Example 7.6. In S3, H = {I, (123), (321)} is a normal subgroup. The subgroup
{I, (12)} is not normal because (12) is conjugate to (13) and (23).

We want to prove that every normal subgroup arises as the kernel of a homo-
morphism. This involves the quotient construction. Given subsets H1, H2 ⇢ G
of a group, define their product by

H1H2 = {h1h2 | h1 2 H1, h2 2 H2}
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Lemma 7.7. If H ✓ G is normal, then the product of cosets satisfies (g1H)(g2H) =
(g1g2)H.

Proof. By definition, (g1H)(g2H) = {g1h1g2h2 | h1, h2 2 H}. Since H is nor-
mal, h3 = g�1

2 h1g2 2 H. Therefore g1h1g2h2 = g1g2h3h2 2 (g1g2)H. This
proves (g1H)(g2H) ✓ (g1g2)H.

For the reverse inclusion (g1g2)H ✓ (g1H)(g2H), observe that if h 2 H,
then g1g2h = (g1e)(g2h) 2 (g1H)(g2H).

Theorem 7.8. If H ✓ G is a normal subgroup, then G/H becomes a group with
respect to the product defined above. The map p(g) = gH is a homomorphism
with kernel H.

Proof. By the previous lemma, (gH)(eH) = gH = (eH)(gH), (gH)(g�1H) =
H = (g�1H)(gH), and (g1H)(g2Hg3H) = g1g2g3H = (g1Hg2H)(g3H). So
G/H is a group. Also p(g1g2) = g1g2H = (g1H)(g2H) = p(g1)(g2), so p is a
homomorphism. Furthermore, ker p = {g 2 G | gH = H} = H.

When H is normal, we refer to G/H as the quotient group. Quotient groups
often show up indirectly as follows.

Lemma 7.9. Let f : G ! H be a homomorphism with kernel K = ker f .
Then the image f(G) = {f(g) | g 2 G} is a subgroup isomorphic to G/K. In
particular, H is isomorphic to G/K if f is onto.

The proof will be given as an exercise. The quotient construction can be
used to tie up some loose ends from earlier sections. Let n be a positive integer,
and let nZ = {nx | x 2 Z}. This is a subgroup. So we can form the quotient
Znew

n

= Z/nZ. The label “new” is temporary, and is there to distinguish it from
Z
n

= {0, 1, . . . , n� 1}. Given an integer x, let x̄ = x+nZ. In particular, x 7! x
gives a map from Z

n

! Znew

n

. We leave it as an exercise to show this is a one
to one correspondence, and that

x� y = x+ y

where + on the right is addition in the quotient group. Thus, we can conclude
that the old and new versions of Z

n

are isomorphic, and we will conflate the
two. Recall, in fact, that we never fully completed the proof that the old Z

n

was a group. Now we don’t have to!

Normal subgroups can be used to break up complicated groups into simpler
pieces. For example, in the exercises, we will see that the dihedral group D

n

contains a cyclic subgroup C
n

, which is normal and the quotient D
n

/C
n

is also
cyclic. Here we look at the related example of the orthogonal group O(2). This
is the full symmetry group of the circle which includes rotations and reflection.
The rotations form a subgroup SO(2).
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Proposition 7.10. SO(2) is a normal subgroup of O(2).

We give two proofs. The first, which uses determinants, gets to the point
quickly. However, the second proof is also useful since it leads to the formula
(7.1).

First Proof. We start with a standard result.

Theorem 7.11. For any pair of 2⇥2 matrices A and B, detAB = detA detB.

Proof. A brute force calculation shows that

(a11a22 � a12a21)(b11b22 � b12b21)

and

(a11b11 + a12b21)(a21b12 + a22b22)� (a11b12 + a12b22)(a21b11 + a22b22)

both can be expanded to

a11a22b11b22 � a11a22b12b21 � a12a21b11b22 + a12a21b12b21

Therefore det : O(2) ! R⇤ is a homomorphism, where R⇤ denote the group
of nonzero real numbers under multiplication. It follows that SO(2) is the
kernel. So it is normal.

Second Proof. We have to show that AR(✓)A�1 2 SO(2) for any A 2 O(2).
This is true when A 2 SO(2) because SO(2) is a subgroup.

It remains to show that conjugating a rotation by a reflection is a rotation.
In fact we will show that for any reflection A

AR(✓)A�1 = R(�✓) (7.1)

First let A be the reflection F =


1 0
0 �1

�
about the x-axis. Then an easy

calculation shows that FR(✓)F�1 = FR(✓)F = R(�✓). Now assume that A is
a general reflection. Then

A =


cos� sin�
sin� � cos�

�
= FR(��)

So
AR(✓)A�1 = FR(��)R(✓)R(�)F = R(�✓)

as claimed.

So now we have a normal subgroup SO(2) ⇢ O(2) which we understand
pretty well. What about the quotient O(2)/SO(2). This can identified with the
cyclic group {±1} ⇢ R⇤ using the determinant.

38



7.12 Exercises

1. Prove lemma 7.2.

2. Determine the normal subgroups of S3.

3. Prove lemma 7.9. (Hint: first prove that f(G) is subgroup. Then that
f̄(gH) = f(g) is a well defined function which gives an isomorphism
G/K ⇠= f(G).)

4. (a) Given a group G and a normal subgroup H. Let S ⇢ G be a subset
with the property that S \ gH has exactly one element for every g 2
G. Show that the restriction of p gives a one to one correspondence
S ! G/H.

(b) Show that these conditions hold for G = R, H = 2⇡Z and S = [0, 2⇡).

5. Prove that Z
n

is isomorphic to the quotient group Z/nZ as claimed earlier.

6. Check that SL2(R) = {A 2 GL2(R) | detA = 1} is a normal subgroup of
GL2(R).

7. In an earlier exercise in chapter , you showed that the set of upper trian-
gular matrices 

1 a
0 1

�

is a subgroup of GL2(R). Is it normal?

8. Let H ✓ G be a normal subgroup f : G ! K be an onto homomorphism,
prove that f(H) = {f(h) | h 2 H} is a normal subgroup. What if f is not
onto?

9. Given a group G, its center Z(G) is the set of elements c which satisfy
cg = gc for every g 2 G.

(a) Prove that the center is an abelian normal subgroup.

(b) Does an abelian normal subgroup necessarily lie in the center? (Think
about the dihedral group.)

10. Check that the center of S
n

, when n > 2, is trivial in the sense that it
consists of only the identity.

39


