
Chapter 5

Derived Functors and Tor
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1. Cartan, Eilenberg, Homological algebra

2. Grothendieck, Sur quelques points d’algèbre homologique

3. Mitchell, Theory of categories

4. Rotman, Intro to homological algebra.

5. Weibel, An introduction to homological algebra

5.1 Abelian categories

We start with some category theory. A category A is called abelian if it behaves
like the category ModR. Rotman section 5.5 treats abelian categories in some
detail. Most other books on homological algebra do as well. Let’s write down a
long list list of conditions on category A, which hold when A = ModR.

A1. HomA(M,N) is an abelian group for every pair of objects M,N .

A2. Composition satisfies f � (g + h) = f � g + f � h whenever both sides are
defined. Similary, (g + h) � f = g � f + h � f when this makes sense.

A3. There is a zero object satisfying HomA(0,M) = HomA(M, 0) = 0 for all
M .

A4. For any pair of objects M,N we can form a direct sum, characterized
up to isomorphism by Hom(M �N,T ) = Hom(M,T )�Hom(N,T ) and
Hom(T,M �N) = Hom(T,M)�Hom(T,N)

A5. Given a morphism f : M ! N , we can form an object ker f with a mor-
phism ker f ! M characterized by Hom(T, ker f) = kerHom(T,M) !
Hom(T,N).
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A6. Given f : M ! N , we can form an object coker f with a morphism
M ! coker f , characterized by Hom(coker f, T ) = kerHom(N,T ) !
Hom(M,T ).

A7. Given f : M ! N , there exists an object im f with morphisms M ! im f

and im f ! N such that their composition is f . We also require that im f

is both coker(ker f ! M) and ker(N ! coker f). (A bit more precisely,
these are canonically isomorphic.)

A category is called additive if A1-A4 hold, and it is called abelian if they
all hold. The last axiom is the hardest to fathom. It is trying to capture
the idea that in ModR, f can be factored through a surjective homomorphism
M ! im f followed by an injective homomorphism im f ! N . Since injectivity
and surjectivity are not categorical notions, we replace them by saying that they
are kernels or cokernels. To appreciate further subtleties, see example 5.5.

Example 5.2. ModR is an abelian category.

Example 5.3. The category of finitely generated modules over a left noetherian

ring is abelian. In particular, this applies to finitely generated abelian groups.

Example 5.4. The category of free abelian groups is additive but not abelian,

because cokernels need not exist.

Example 5.5. The category of Hausdor↵ topological abelian groups and contin-

uous homomorphisms satisfies A1-A6. The operations are the usual ones except

for the cokernel. The cokernel of f : M ! N in this category is the quotient

N/f(M). However, if f(M) is not closed, the map from coker(ker f ! M) =
M/ ker f to ker(N ! coker f) = f(M) is not an isomorphism. So A7 fails.

Here is a simple yet powerful observation.

Proposition 5.6. If A is abelian (resp. additive), then so is the opposite cat-

egory A
op
. This has the same objects as A but arrows are reversed, so that

HomAop(N,M) = HomA(M,N).

Proof. The axioms are self dual.

Therefore

Example 5.7. Mod
op

R
is an abelian category. (NB: This should not be confused

with ModRop .)

Given an abelian category, we can do most of what we have done so far in
class. In particular, we can talk about exact sequences, injectives, projectives,
complexes, and homology. We also note the following remarkable fact:
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Theorem 5.8 (Freyd-Mitchell). Any small
1
abelian category can be embedded

into a category modules over a ring in such a way that Hom’s are the same,

and exact sequences are the same.

A proof can be found in Mitchell’s book. Since we will mostly be working
with explicit examples, we won’t really need it. But it is reassuring to know
that one can pretend that an abstract abelian category is a category of modules,
without loosing too much. Also this means that various standard results such
as the 5-lemma, snake lemma, etc. can be extended to an arbitrary abelian
category.

In order to do more homological algebra, we need the following.

Definition 5.9. An abelian category has enough injectives if for every object

M , there exists an injective object I and a morphism f : M ! I such that

ker f = 0.

Example 5.10. ModR has enough injectives.

Example 5.11. Mod
op

R
has enough injectives. This is because an injective in

Mod
op

R
is a projective module, and every module is the quotient of a projective

module.

Example 5.12. The category of finitely generated abelian groups does not have

enough injectives.

5.13 Derived functors

Definition 5.14. A functor F : A ! B between additive categories is called

additive if F (f + g) = F (f) + F (g), for every f, g 2 Hom(M,N).

Lemma 5.15. If F is additive, then F (M �N) ⇠= F (M)� F (N).

Proof. There are morphisms i : M ! M�N , j : N ! M�N , p : M�N ! M ,
and q : M � N ! N such that pi = idM , qj = idN , pj = 0, qi = 0, and ip +
jq = idM�N . The existence of such a collection of morphisms satisfying these
relations characterizes the direct sum. The collection F (i), . . . would satisfy the
same relations, therefore F (M �N) must be isomorphic to F (M)� F (N).

Definition 5.16. An additive (covariant) functor F : A ! B from one abelian

category from one category to another is left (right) exact if whenever

0 ! M ! N ! P ! 0
1
This is a set theoretic condition. In Gödel-Bernays, or similar set theory, one distinguishes

between sets and classes. Classes are allowed to be very big, but sets are not. For example,

one can form the class of all sets, but it wouldn’t be a set. One is not allowed to form the

class of all classes, thus avoiding the standard paradox of Cantor’s set theory. A category is

called small if the collection of the objects and morphisms form a set as opposed to a proper

class.
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is exact,

0 ! F (M) ! F (N) ! F (P )

(resp.

F (M) ! F (N) ! F (P ) ! 0

is exact.) A functor which both right and left exact is called exact.

We can also handle contravariant functors F : A ! B by treating them as
covariant functors from F : Aop ! B. These are left or right exact if the second
form is.

Let us fix a left exact functor F : A ! B, and let assume that A has enough
injectives. An injective resolution of an object M is an exact sequence

0 ! M ! I
0 ! I

1
. . .

with I
i injective. By an argument dual to what we did for projective resolutions,

we can see

Lemma 5.17. Every M possesses an injective resolution.

By arguments similar to what we did for Ext, we have

Theorem/Def 5.18. We define the right derived functors

R
i
FM = H

i(F (I•))

The isomorphism class of these objects do not depend on the resolution.

Theorem 5.19. R
i
F extend to additive functors from A ! B with R

0
F = F .

Given a short exact sequence

0 ! M1 ! M2 ! M3 ! 0

there is a long exact sequence

. . . R
i
FM1 ! R

i
FM2 ! R

i
FM3 ! R

i+1
FM1 . . .

Derived functors were introduced by Cartan and Eilenberg in their book in
the mid 1950’s in order to unify several disparate theories. Grothendieck carried
the story further in his landmark paper shortly thereafter.

Example 5.20. Fix a module N , and consider the left exact functor HomR(�, N) :
Mod

op

R
! Ab. The right derived functors

R
i
HomR(�, N) = Ext

i

R
(�, N)

by definition.

However, if we fix M , and consider HomR(M,�) : ModR ! Ab we can also
take derived functors. A much less obvious fact is
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Theorem 5.21.

R
i
HomR(M,�) ⇠= Ext

i

R
(M,�)

Since Rotman does not appear to do this, we indicate the proof. A �-functor
is a sequence of functors F i : A ! B such that for any exact sequence

0 ! M1 ! M2 ! M3 ! 0

there is a long exact sequence

. . . F
i
M1 ! F

i
M2 ! F

i
M3 ! F

i+1
M1 . . .

such that the connecting maps are natural in the appropriate sense. For ex-
ample, the sequence of right derived functors F i = R

i
F forms a delta functor.

A functor F is called e↵acable if for any M , there exists an exact sequence
0 ! M ! I such that F (I) = 0.

Theorem 5.22. Suppose that if F
i
is a �-functor such that for any i > 0 F

i
is

e↵acable. Then F
i = R

i
F

0
.

Proof. This follows from the results of chap II sections 2.2-2.3 of Grothendieck.

Proof of theorem 5.21. By results proved earlier Ext
i(M,�) is a �-functor. Fur-

thermore if i > 0 and I is injective, Ext
i(M, I) = 0. Therefore Ext

i(M,�) is
e↵acable. So the result follows from the previous theorem.

A right exact functor F : A ! B is the same thing as a left exact functor
F

0 : Aop ! B
op. So that we can take right derived of F 0. When the story is

translated back to F , we arrive at the notion of a left derived functor. To be
explicit, given M , choose a projective resolution

. . . P1 ! P0 ! M ! 0

We need to assume that A has enough projectives to guarantee this exists. Set

LiF = Hi(F (P•))

The key properties are:

• These are independent of the choice of resolution.

• These are additive functors from A ! B such that L0F = F .

• A short exact sequence

0 ! M1 ! M2 ! M3 ! 0

gives rise to a long exact sequence

. . . LiM1 ! LiM2 ! LiM3 ! Li�1M1 . . .
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5.23 Tor functors

Given a right R-module M , consider the functor T : ModR ! Ab defined by

T (N) = M ⌦R N

This is a right exact functor. We define

Tor
R

i
(M,N) = LiT

Then given
0 ! N1 ! N2 ! N3 ! 0

we get an exact sequence

. . . T or
R

1 (M,N1) ! M ⌦R N1 ! M ⌦R N2 ! M ⌦R N3 ! 0

This will allow us to compute this in principle, but we still need a few more
tricks.

Proposition 5.24. If N is flat, then Tori(M,N) = 0 for i > 0.

Proof. This follows from the construction

Tori(M,N) = LiT (N) = Hi(P• ⌦N)

where P• ! M ! 0 is a projective resolution. Since N is flat,

. . . P1 ⌦N ! P0 ⌦N ! M ⌦N ! 0

is exact. This means that P• ⌦N has no homology in positive degrees.

Theorem 5.25. Suppose that R is a (commutative) integral domain with field

of fractions K. If f 2 R is nonzero,

Tori(M,R/fR) =

(
{m 2 M | fm = 0} if i = 1

0 if i > 1

Tori(M,K/R) =

(
{m 2 M | 9f 2 R, fm = 0} if i = 1

0 if i > 1

Remark 5.26. “Tor” is short for “torsion”. The theorem partly explains why

this name makes sense.

Proof. We have an exact sequence

0 ! R
f! R ! R/fR ! 0
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Since R is flat, we obtain

0 = Tori(M,R) ! Tori(M,R/fR) ! Tori�1(M,R) = 0

for i > 1. We can identify M ⌦ R = M and the map 1 ⌦ f with f . Therefore
we also have

0 ! Tor1(M,R/fR) ! M
f! M

The proof of the second isomorphism is similar. We use the sequence

0 ! R ! K ! K/R ! 0

and the fact that K is flat.

We note the following useful symmetry property.

Theorem 5.27. Under the identification of left (right) R-modules with right

(left) R
op
-modules,

Tor
R

i
(M,N) ⇠= Tor

R
op

i
(N,M)

In particular, if R is commutative,

Tor
R

i
(M,N) ⇠= Tor

R

i
(N,M)

Comments about the proof. The result is stated in theorem 7.1 in Rotman, but
the proof given there is incomplete. What’s missing is the fact that one can
compute Tor using a projective resolution of the second variable. See theorem
2.7.2 of Weibel for this. (We may do this later, if there is time.)

5.28 Homology of a group

Fix a group G and G-module i.e. ZG-module M . We regard Z as a left (and
also right) G-module with trivial G-action. Earlier we defined

H
i(G,M) = Ext

i

ZG(Z,M)

In the current language, we could also define it as the right derived functors of
the left exact functor

M 7! M
G

Recall that MG ⇢ M is the submodule of element invariant under G. It is the
largest submodule on which G acts trivially. Let MG be the largest quotient
module on which G acts trivially. More explicitly

MG = M/{gm�m | m 2 M, g 2 G}

Lemma 5.29. Treating Z as a right ZG-module with trivial G action,

MG
⇠= Z⌦ZG M
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Proof. We define a surjective ring homomorphism ✏ : ZG ! Z by

✏(
X

i

nigi) =
X

i

ni

Let I = ker ✏. This is the two sided ideal generated by g � 1 with g 2 G.
Consider the exact sequence

0 ! I ! ZG ! Z ! 0

Tensoring with M gives a sequence

I ⌦M ! ZG⌦M ! Z⌦M ! 0

We can identify the middle module with M , and the image of the first map with
{(g � 1)m | g 2 G,m 2 M}. So the lemma is now proved.

Corollary 5.30. M 7! MG is right exact.

We define group homology by

Hi(G,M) = Tor
ZG
i

(Z,M)

The lemma shows that
H0(G,M) = MG

Before describing the next result, we recall that the commutator (or derived)
subgroup [G,G] ✓ G is the normal subgroup generated by all commutators
ghg

�1
h
�1. The quotient G/[G,G] can be characterized as the largest abelian

quotient of G.

Theorem 5.31. H1(G,Z) ⇠= G/[G,G]

Proof. With the above notation, we have an exact sequence

Tor
ZG
1 (ZG,Z) ! Tor

ZG
1 (Z,Z) ! I ⌦ZG Z ! ZG⌦ZG Z r! Z⌦ZG Z ! 0

By theorem 5.27

Tor
ZG
1 (ZG,Z) ⇠= Tor

ZGop

1 (Z,ZG)

In fact g 7! g
�1 induces an isomorphism between ZG and ZGop. Therefore

Tor
ZGop

1 (Z,ZG) ⇠= Tor
ZG
1 (Z,ZG) = 0

because ZG is flat. The map marked r above can be identified with the identity
Z ! Z. By definition H1(G,Z) = Tor1(Z,Z). Therefore, we can conclude

H1(G,Z) ⇠= I ⌦ZG Z = I ⌦ZG ZG/I = I/I
2

Let f : G ! I/I
2 be given by f(g) = g � 1mod I

2. Since

(gh� 1)� (g � 1)� (h� 1) = (g � 1)(h� 1) 2 I
2

f is a homomorphism. Since I/I2 is abelian, it factors through a homomorphism
f̄ : G/[G,G] ! I/I

2. An explicit inverse is constructed on page 540 of Rotman,
So f̄ is an isomorphism.
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