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Filtered holomonic D-modules

Let X be a complex algebraic variety of dimension n.

A filtered regular holonomic D-module with Q is a triple
M = (M, Fe M, K), consisting of the following objects:

© A constructible complex of Q-vector spaces K.

@ A regular holonomic right Dx-module M with an isomorphism
DR(M) ~ C ®q K.
By the Riemann Hilbert correspondance, this makes K a perverse
sheaf.
© A good filtration FM by Ox-coherent subsheaves of M such that

Qo Fp./\/l - FkDx C Fp+k./\/l
Q grf./\/l is coherent over grfDX
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Remark on the de Rham Complex

For a right Dx-module M, we have a left D-module A such that
wx QN = M.

With the following isomorphism,
DR(M) ~ DR(N)[n] =
V= QkaN = = QLo N = Q) @ Nn|

When we have a filtered D-module M, we have
FpM = FpinN @0, wx.
We also have the natural filtered family of subcomplexes
FpDR(M) ~ F,DR(N)[n] =
Vo = Q% @ Npi1 — -+ = Q% @ Np ][]
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Let M = wx with the following filtration

wx if p>—n
prX: .
0 if p<—n

Then (wx, Fewx, Q[n]) is a filtered regular holonomic D-module with
@-structure.
For 0 < p < n we have

F_,DR(wx) =~ [0 — Q% — Q%™ — - — Q3 ][n]

grprR(wX) ~ Q% [n— p]
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Nearby and Vanishing Cycles

For a holomorphic function f : X — A which is submersive over the
punctured unit disk A* = A\{0}, we have following commutative
diagram:

e X —— X,

)~< 1
Lo
H—55 A+ {0}

H = Upper half-plane

X = the fiber product of X and H over A
Xo = f_l(O)
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Let K be a contsructible complex of C-vector spaces on X. We have the
following two complexes:

Complex of nearby cycles
K = i71Rm. (7 1K)

Vanishing cycles

drK = Cone(i K — 1h¢K)
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Suppose f : X — A is proper and smooth on X\ Xp. If x € Xg, then we
have

Hi(eK)x ~ H(B2, N Xe; K|x,)
Hi(prK)x =~ HH(BL,, B2, N Xe; K]x,)
HI(XO; wa) ~ Hi(Xt; K|Xt)

Where X; = f~*(t) for 0 < [t| sufficiently small and B?, is an open ball
of radius € in X, centered at x.

Reference: L. Maxim, Intersection Homology & Perverse Sheaves
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Recall:
o (Gabber) When K is perverse, the shifted complexes
PihrK = heK[~1] and POK = ¢¢K[—1]

are perverse sheaves.

@ PirK has a monodromy operator T, induced by the automorphism
z — z+ 1 of the upper half-plane H.

@ Since perverse sheaves form an abelian category, we have the
following decomposition

P K = @ Pipr A K
AeCx
Where Piyr \K = ker(T — Xid)™, for m > 0, are the eigenspaces.

We have a similar decomposition for P¢r.
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V-filtrations

Let f € Ox an arbitrary nontrivial function. For a filtered Dx-module
M = (M, Fe M, K), we use the graph embedding

(id,f): X = X xC
to obtain a filtered Dxxc-module (M, FeM¥).
Where
My = (id, ) M = M[04]
FoMy = Fo(id, )y M = Fo_iM @ 9],

i=0
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A V- filtration on Mg is a rational filtration (V, = V, M) cq that is
exhaustive and increasing such that the following conditions are satisfied:

e Each V, is a coherent module over Dx|t, 0;t]
@ For each v € Q and i € Z, we have an inclusion
V, - ViDxxc C Vo4

Furthermore, V., -t = V,_; for v < 0.

o For every v € Q, if we set V., = U V.., then t0; — 7 acts
v <y
nilpotently on gry =V,/V,.
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Recall:

o (Kashiwara, Malgrange) When M is regular holonomic and Py K is
quasi-unipotent, the V-filtration for My exists and it is unique.

o (Kashiwara, Malgrange) The graded quotients gr,)/./\/lf are again
regular holonomic D-modules on X whose support is contained in
the original divisor Xy = f~1(0).

@ We endow each Dx-module gr,)//\/lf with the filtration induced by
FoMf

Fpr N V,ny
FoMe N Vo  Me

Fpgl’,ny =
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Definition

The unipotent nearby cycles Dx-module of My along t is defined as

Tl)t,lM = grl/l/\/l,c.

The vanishing cycles Dx-module of My along t is

PeaM = grd Mg

From the previous discussion and the definitions above, it seems as
though we have the following to be filtered regular holonomic D-modules
with Q-structure:

YraM = (gr¥iMe, Fu_1gr¥i My, P 1K)
b 1M = (gry’ Mr, Fogry Ms, P 1K)

Scott Hiatt Hodge Modules

12/25



Definition

We say that (M, Fe M, K) is quasi-unipotent along f = 0 if all
eigenvalues of the monodromy operator on P K are roots of unity, and if
the V-filtration VM satisfies the following two additional conditions:

Q t: LV, M — F,V,_1 Mg is surjective for v < 0.
Q 0:: Fpgr,)/./\/lf — Fp+1gr¥+1Mf is surjective for v > —1.
We say the (M, Fe M, K) is regular along f = 0 if F.gr,)/./\/l,c is a good

filtration for every —1 < v < 0.
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Theorem (Saito)

If M is holonomic, and is regular and quasi-unipotent along f, then we
have

YADR(M)[-1] for—1<~y<0

DR(grV ~
(gry Mr) {ADR( M)[=1] for—1<~<0

where A = 2™V, Furthermore, we have the following identification
between perverse sheaves and D-modules

can 6[
Y Y
Pipe 1 K Por1K Y1 M dr M
o~ r\?/
Var

1
—logT, = N = Var o can & t0;
27i
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If M= (M, FeM,K) is a filtered regular holonomic D-module with
@-structure which is quasi-unipotent and regular along f, then

M = @ (ngVMf’ F'*lgrvaf, plﬁf’ezwwK)

—1<~4<0
YraM = (gr¥iMe, Fu_1gr¥i My, Pioe 1K)
(bf,lM = (groVMh Fogroth p¢f,1K)

are filtered regular holonomic D-modules with Q-structure on X whose
support is contained in Xo = f~1(0).
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Remark:
Let j: X x C\X x {0} <= X x C be the natural inclusion map.

@ Suppose M has strict support Z and M is quasi-unipotent and

regular along f. If the restriction of f to Z is not constant, then
oo

FoMe = (VeoMr N jiuj* FpoiM¢)0]
t=0
provided that 0; : Fogr¥i Ms — F,i18r) My is surjective.

@ The equality implies M is uniquely determined by its restriction to
Z\(Z N Xp).
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Hodge Modules

Given a filtered regular holonomic D-module with Q-structure
M = (M, FeM, K). When is M a Hodge Module?

o First, for any Zariski-open subset U C X and f € ['(U, Oy), the
restriction of M to U is quasi-unipotent and regular along f = 0.

@ Second, Saito requires M to admit a decomposition by strict
support, in the category of regular holonomic D-modules with
@Q-structure.
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Theorem

Let M be a filtered regular holonomic D module with Q structure, and
suppose that (M, Fe M) is quasi-unipotent and regular along f = 0 for
every locally defined holomorphic function f. Then M admits a

decomposition
M ~ @ MZ
ZCX

by strict support, in which each Mz is again filtered regular holonomic
D-module with Q-structure, if and only if one has

¢r1M = ker(Var : ¢r 1M — b1 M(—1)) & im(can : r 1M — ¢r1 M)

for every locally defined holomorphic function f.

The problem of defining Hodge modules is reduced to defining Hodge
modules with strict support on irreducible closed subvarieties Z.
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Let Z be an irreducible closed subvariety of X. Saito uses a recursive
procedure to define the following category.

HMz(X,w) =
{Hodge Modules on X with strict support on Z with weight W}

Q If Z is a point x € X, then we have an equivalence of categories
between Hodge Structures and Hodge Modules with strict support
on x.

(ix)« 1 HS(wW) =~ HM, (X, w)
@ If dz > 0, then M belongs in HMz(X, w) if the following conditions
hold:
Let f € F(U Oy) and suppose ZNU ¢ f~1(0), then we have

r e My, gri¥, ér 1My € HM.q, (U, )
Where W is the monodromy filtration of the nilpotent operator N
on the nearby cycles of ¥ M.
HM_.4,(U, i) is the direct sum of HMz: (U, i) with Z’ running over
closed irreducible subvarieties of U with dz: < d7.
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Definition
The category of Hodge modules of weight w on X has objects

HM(X, w) = | ) HM<a(X,w) = @ HMz(X, w);

d>0 ZCX

its morphisms are the morphisms of regular holonomic D-modules with

@-structure.
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Polarizations

A polarization on a Hodge module M € HM(X, w) is a perfect pairing
S: K@Q K— Qx(n — W)[Qn]

with the following properties:

@ It's compatible with the filtration. That is, it extends to an
isomorphism M(w) ~ DM in the category of Hodge modules.

@ For every summand My in the decomposition of M by strict
support, and for every locally defined holomorphic function
f: U — C this is not identically zero on UN Z, we have

PpeS o (id @ N')
is a polarization of Pgriv_'/w+l1/)fMU := ker(N'*1) (primitive part).
@ If dimMz; =0, then S is induced by a polarization of Hodge
structures in the usual sense.
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Definition

We say a Hodge module is polarizable if it admits at least one
polarization, and we denote by

HMP(X, w) € HM(X, w) and HMB(X, w) C HMz(X, w)

the full subcategories of polarizable Hodge modules.

Theorem (Properties)

@ There are no nonzero morphism from an object in HMP(X, wy) to
an object HMP(X, wy) if wp > wy
@ The category HMP(X, w) is abelian and any morphism is strict.

@ The category HMP(X, w) is semi-simple.
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Structure Theorem

Theorem (Saito)

For any closed irreducible subvariety Z C X, the restriction to sufficiently
small open subvarieties of Z induces an equivalence of categories

HM5(X,w) ~ VHSP, (Z,w — dimZ)

gen

where the right-hand side is the category of polarizable variations of pure
Hodge structures of weight w—dimZ defined on a smooth dense open
subvarieties U of Z. Moreover, we have a one-to-one correspondence
between polarizations of M € HMz(X, w) and those of the corresponding
generic variation of Hodge structure.

v
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v

o (wx, Fewx,Q[n]) is a polarizable Hodge module of weight n.
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Direct Image Theorem

Theorem (Saito)

Let f : X — Y be a projective morphism of smooth complex algebraic
varieties, and M = (M, F,, K) € HM5(X, w). Let ¢ be the first Chern
class of an f-ample line bundle. Then the direct image f.(M, F,) as a
filtered D-module is strict, and we have

HEM = (H FP(M, F), PHIf,K) € HMP(Y ,w + i)
together with isomorphisms
0 1M ~ HIEM(i)

Moreover, a polarization of M induces a polarization on H'f, M in the
Hodge-Lefschetz sense.
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