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An infinite series is a sum
∞∑

n=0

cn = c0 + c1 + . . .

where the ci are complex numbers (and later on complex valued functions). This
is said to converge to S if

lim
N→∞

SN = S, where SN =

N∑
n=0

cn

If there is no limit, the series is said to diverge. The basic example (discussed in
class and the book) is

THEOREM 1. If |c| < 1, then the geometric series
∞∑

n=0

cn =
1

1− c
converges.

The comparison test allows us to construct other examples from this:

THEOREM 2 (Comparison Test). If |cn| ≤Mn for all n and if
∞∑

n=0

Mn

converges, then
∞∑

n=0

cn

converges.

EXAMPLE 1.
1

n!
=

1

1 · 2 · 3 · · ·n
≤ 1

2 · · · 2
=

1

2n−1

Therefore
∑∞

n=0 i
n/n! converges by the comparison test.

Suppose that an is a sequence of real numbers with limit a = lim an, then as n and
m get large, an and am get closer to a, therefore closer to each other. More precisely
for every ε > 0, there exists N such that |an − am| < ε for n,m > N . A sequence
with this property is called a Cauchy sequence To prove that the comparison test
works, we need the following fact which is an axiom1 about the real numbers system,
rather than a theorem.

1Although in some treatments of real analysis, this is sometimes deduced from another axiom
called the least upper bound axiom.
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AXIOM 1 (Completeness of the real numbers). Suppose an is Cauchy sequence
of real numbers, then lim an exists as a real number.

To apply this to complex sequences, we note that

lim
n→∞

(an + ibn) = lim
n→∞

an + i lim
n→∞

bn

if both limits exist on the right.

THEOREM 3. Suppose that cn is a sequence of complex numbers such that for
every ε > 0, there is an N so that the“tail” |

∑m
j=n cj | < ε for m > n > N . Then∑∞

j=0 cj converges.

Proof. Let cj = aj + ibj , and let AN =
∑N

j=0 aj and BN =
∑N

j=0 bj . We see that

ε > 0, there is an N so that the |Am −An| ≤
∑m

j=n cj | < ε for m > n > N . So the

completeness axiom shows that
∑N

j=0 aj = limN AN exists. The same argument

shows that
∑N

j=0 bj = limN BN exists. So
∑∞

j=0 cj = limAN + i limBN . �

Proof of theorem 2. By the triangle inequality together with the hypothesis, we
have

|
m∑
n

cj | ≤
m∑
n

|cj | ≤
m∑
n

Mn

The sequence Sn =
∑n

0 Mn converges so its Cauchy, that
∑m

n Mn can be made as
small as possible for m > n > N , as N →∞.

�

THEOREM 4. Suppose that for some real 0 < b < 1 and N we have cn 6= 0 and
|cn+1/cn| ≤ b for n ≥ N , then

∑∞
n=0 cn converges.

Proof. If n ≥ N , then

|cn| ≤ b|cn−1| ≤ b2|cn−2| ≤ . . . bN−n|cN |
By the comparison test

∞∑
n=0

cn =

N−1∑
n=0

cn + cN
∑ cn

cN

converges. �

COROLLARY 1 (The ratio test). If

lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ = a

exists and a < 1, then
∑∞

n=0 cn converges.

Proof. Pick a < b < 1 (e.g. b = (1 + a)/2), then for all but finitely many n,
|cn+1/cn| ≤ b �

We can use this to improve an earlier example.

EXAMPLE 2. For any complex number a consider cn = an/n!. Then

lim
n→∞

|cn+1

cn
| = lim

|a|
n

= 0

so
∑
an/n! converges.


