LINEAR RECURRENCES AND MATRICES

DONU ARAPURA

This supplements the discussion in section 8.2 of Rosen. I will assume that you have taken/are taking/will take linear algebra (MA265 or MA351 or equivalent).

1. Linear Recurrences

Recall that a homogeneous linear recurrence of order k is a sequence $a_{0}, a_{1}, a_{2} \ldots$ satisfying

$$
\begin{equation*}
a_{n}=c_{1} a_{n-1}+\ldots+c_{k} a_{n-k} \tag{1}
\end{equation*}
$$

for $n \geq k$. The first k values a_{0}, \ldots, a_{k-1} are called initial values. We will refer to the rest of the sequence as a solution. There a couple of easy observations, which we state as propositions.

PROPOSITION 1.1. Once the initial values are specified, the rest of the sequence, i.e. the solution, is uniquely determined.

The first statement should be obvious. The second follows from linearity:
PROPOSITION 1.2. If a_{n} and a_{n}^{\prime} are two solutions to (1), then $d a_{n}+e a_{n}^{\prime}$ is also a solution for any choice of numbers d and e.

2. Linear Recurrences using matrices

Recall that a matrix is a rectangular arrangment of numbers. The only ones we need are 2×2 matrices, such as the first matrix below, 2×1 matrices such as the second. The product of two such matrices is

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y}
$$

We can also multiply two 2×2 matrices by

$$
A B=(A(1 \text { st col of } B) \quad A(2 \text { nd col of } B))
$$

Let's consider a second order recurrence

$$
\begin{equation*}
a_{n+2}=c_{1} a_{n+1}+c_{2} a_{n}, \quad n \geq 0 \tag{2}
\end{equation*}
$$

with initial values a_{0}, a_{1}. Introduce matrices

$$
\begin{gathered}
v_{n}=\binom{a_{n+1}}{a_{n}} \\
C=\left(\begin{array}{cc}
c_{1} & c_{2} \\
1 & 0
\end{array}\right)
\end{gathered}
$$

Then

$$
C v_{n}=\binom{c_{1} a_{n+1}+c_{2} a_{n}}{a_{n+1}}
$$

Therefore (2) is equivalent to the matrix equation

$$
v_{n+1}=C v_{n}
$$

So that

$$
v_{1}=C v_{0}, v_{2}=C v_{1}=C^{2} v_{0}, \ldots
$$

We immediate get the complete solution
THEOREM 2.1. The solution to the recurrence (2) is given by

$$
v_{n}=C^{n} v_{0}
$$

This solution is both good and bad. Good because it's conceptually very simple, and bad because $C^{n} v_{0}$ is generally hard to calculate. There is one case, where it is easy. If v_{0} happens to be an eigenvector for C, then

$$
C v_{0}=\lambda v_{0}
$$

for some number λ called the eigenvalue. In this case we can see that
COROLLARY 2.2. If v_{0} is an eigenvector with eigenvalue λ, then

$$
v_{n}=\lambda^{n} v_{0}
$$

In general, we shouldn't expect v_{0} to be an eigenvector. However, what is generally true is that v_{0} is a linear combination $v_{0}=b_{1} v^{\prime}+b_{2} v^{\prime \prime}$ of eigenvectors $v^{\prime}, v^{\prime \prime}$ with eigenvalues λ_{1} and λ_{2} respectively. In this case, using proposition 1.2, we see that:

COROLLARY 2.3. If $v_{0}=b_{1} v^{\prime}+b_{2} v^{\prime \prime}$ as above, then

$$
v_{n}=\lambda_{1}^{n} v^{\prime}+\lambda_{2}^{n} v^{\prime \prime}
$$

While the eigenvectors and eigenvectors can be found in principle, it seems easier to find an elementary solution from scratch, using the above solution as a guide to what to look for.

3. Elementary solution

The first step to finding a solution to (2) is to first look for a solution of the form

$$
a_{n}=\lambda^{n}
$$

When $n=2$, (2) says that

$$
\lambda^{2}=c_{1} \lambda+c_{2} \lambda
$$

or that

$$
\begin{equation*}
\lambda^{2}-c_{1} \lambda-c_{2}=0 \tag{3}
\end{equation*}
$$

This is called the characteristic equation for the recurrence. It is not hard to see that it happens to also be the characteristic equation for the matrix C, if you remember what that means.

THEOREM 3.1. If λ is a solution to (3), then $a_{n}=\lambda^{n}$ is a solution to (2).
Proof. Multiplying (3) by λ^{n} yields

$$
\lambda^{n+2}-c_{1} \lambda^{n+1}-c_{2} \lambda^{n}=0
$$

But this implies (2).

This is a quadratic equation, so it can be solved using highschool algebra. Either we get two distinct solutions λ_{1}, λ_{2} or just one solution. Let us assume the first case. Then
THEOREM 3.2. If (3) has two distinct solutions λ_{1}, λ_{2}, then all the solutions to (2) are given by

$$
a_{n}=b_{1} \lambda_{1}^{n}+b_{2} \lambda_{2}^{n}
$$

for constants b_{1}, b_{2}.
Proof. It follows from proposition 1.2 and theorem 3.1 that

$$
a_{n}=b_{1} \lambda_{1}^{n}+b_{2} \lambda_{2}^{n}
$$

is a solution to (2). So we just have to show that any solution is of this form. Suppose that a_{0}, a_{1} are given initial values. Then we have to solve the system of equations

$$
\begin{gathered}
b_{1}+b_{2}=a_{0} \\
\lambda_{1} b_{1}+\lambda_{2} b_{2}=a_{1}
\end{gathered}
$$

where the b_{i} are the unknowns. This can be done using Cramer's rule from linear algebra, which gives the solution as a ratio of determinants. The only thing to check is the determinant in the denominator

$$
\operatorname{det}\left(\begin{array}{cc}
1 & 1 \\
\lambda_{1} & \lambda_{2}
\end{array}\right)=\lambda_{2}-\lambda_{1}
$$

is nonzero. But this follows from the fact that $\lambda_{1} \neq \lambda_{2}$.
Examples and other things were done in class.

