MA17300 Midterm Exam 1

Practice Test 2

Use the substitution formula to evaluate the integral.

1) $\int_{\pi}^{3 \pi / 2} \frac{\sin \theta d \theta}{2+\cos \theta}$

Evaluate the integral by using multiple substitutions.
2) $\int \frac{12 \tan ^{2} x \sec ^{2} x}{\left(2+\tan ^{3} x\right)^{2}} d x$

Find the area enclosed by the given curves.
3) $y=2 x-x^{2}, y=2 x-4$

Find the volume of the solid generated by revolving the shaded region about the given axis.
4) About the y-axis

Use the shell method to find the volume of the solid generated by revolving the region bounded by the given curves about the given lines.
5) $y=16-x^{2}, \quad y=16, \quad x=4$; revolve about the line $y=16$

Find the length of the curve.
6) $y=\frac{3}{8}\left(x^{4 / 3}-2 x^{2 / 3}\right)$ from $x=1$ to $x=64$

Solve the problem.
7) At lift-off, a rocket weighs 40.6 tons, including the weight of fuel. It is fired vertically, and the fuel is consumed at the rate of 2.53 tons per $1,000 \mathrm{ft}$ of ascent. How much work is done in lifting the rocket to an altitude of $10,000 \mathrm{ft}$?

Answer Key
Testname: ME1PRAC2

1) $-\ln 2$
2) $\frac{-4}{2+\tan ^{3} x}+C$
3) $\frac{32}{3}$
4) $10 \pi^{2}-20 \pi$
5) $\frac{1024}{5} \pi$
6) $\frac{855}{8}$
7) $2.80 \times 10^{5} \mathrm{ft} \cdot \mathrm{ton}$
