LECTURE
NOTES IN ANALYSIS
TABLE
OF CONTENTS
- PREFACE
- CHAPTER I.
DIFFERENTIATION
- §1. Covering Lemmas
- §2. Monotone Functions
- §3. Functions of Bounded Variation
- §4. Absolute Continuity
- CHAPTER II.
SIGNED MEASURES AND APPLICATIONS
- §1. Signed Measures
- §2. The Radon-Nikodym Theorem
- §3. The Riesz Representation Theorem for Lp
- CHAPTER III.
PRODUCT MEASURES
- §1. Product Measures
- §2. Fubini's Theorem
- CHAPTER IV.
CONVOLUTIONS AND APPROXIMATIONS TO THE IDENTITY
- §1. Minkowski's Integral Inequality
- §2. Convolution Operator
- §3. Approximations to the Identity
- CHAPTER V. THE
HARDY-LITTLEWOOD MAXIMAL FUNCTION
- §1. Hardy-Littlewood Maximal Function
- §2. The Calderón-Zygmund Decomposition
- §3. Applications to BMO
- §4. Interpolation Theorems
- CHAPTER VI.
THE FOURIER TRANSFORM
- §1. The Fourier transform on L1
- §2. The Fourier transform on L2
- §3. Applications
- CHAPTER VII.
SINGULAR INTEGRALS
- §1. Singular Integrals on L1
- §2. Singular Integrals on Lp
- §3. Singular Integrals and BMO
- §4. Some Vector Valued Inequalities
- CHAPTER VIII.
THE RIESZ TRANSFORMS
- §1. Hilbert Transform
- §2. Riesz Transforms
- §3. The Cauchy-Riemann Equations
- §4. Beurling-Ahlfors Transform
- CHAPTER IX.
FRACTIONAL INTEGRATION
- §1. Definitions and boundedness
- §2. Inequalities of Sobolev and Nash
- CHAPTER X.
LITTLEWOOD-PALEY AND LUSIN SQUARE FUNCTIONS
- §1. Definitions, L2-properties,
and pointwise comparisons
- §2. Lp-properties
- §3. The Hörmander multiplier theorem
- REFERENCES
- INDEX
- NOTATION