April	7,	1997
- F	- /	

(10) **1.** The vectors (1, 2, 1), (3, 4, 5), (2, 0, k) are linearly **dependent** if

A. k = 1B. k = 6C. $k \neq 6$ D. k = 0E. $k \neq 0$

(10) 2. If $T: P_3 \to P_3$ is a linear transformation such that $T(x^2 - 1) = x^2 + x - 3$, T(3x) = 6xand T(2x + 1) = 4x + 4, then $T(x^2)$ is

> A. x^{2} B. $x^{2} + x - 2$ C. $x^{2} + x - 1$ D. $x^{2} + x$ E. $x^{2} + x + 1$

(10) **3.** Use Cramer's Rule to solve the system below for the unknown functions $u_1(x)$ and $u_2(x)$.

 $u_1 \sin x + u_2 \cos x = 0$ $u_1 \cos x - u_2 \sin x = e^x$

(10) 4. What is the correct form of y_p to use when finding a particular solution to the equation $y'' + y = x \cos x$ using the method of undetermined coefficients? **Do not compute the coefficients**. Just write down the **FORM** of the particular solution. (For example, if the right hand side were x^2 , the correct form of y_p would be $Ax^2 + Bx + C$.)

(20) **5.** Let

$$A = \begin{bmatrix} 1 & 1 & -2 \\ 0 & 1 & a \\ 2 & 4 & -3 \end{bmatrix}$$

- a) for what value(s) of a is det $A \neq 0$.
- **b**) Find all a such that the equation Ax = 0 has a nontrivial solution.

(20) 6. Find the general solution y(x) to the differential equation

$$y'' + 3y' + 2y = 10\sin x.$$

(20) 7. Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be defined by Tx = Ax where

$$A = \begin{bmatrix} 1 & 1 & -1 & -3 \\ 0 & 1 & 1 & -4 \\ 2 & 2 & -2 & -6 \end{bmatrix}.$$

Find a basis for $\ker(T)$. What is the dimension of $\ker(T)$?