\qquad
(10) 1. The vectors $(1,2,1),(3,4,5),(2,0, k)$ are linearly dependent if
A. $k=1$
B. $k=6$
C. $k \neq 6$
D. $k=0$
E. $k \neq 0$
(10) 2. If $T: P_{3} \rightarrow P_{3}$ is a linear transformation such that $T\left(x^{2}-1\right)=x^{2}+x-3, T(3 x)=6 x$ and $T(2 x+1)=4 x+4$, then $T\left(x^{2}\right)$ is
A. x^{2}
B. $x^{2}+x-2$
C. $x^{2}+x-1$
D. $x^{2}+x$
E. $x^{2}+x+1$
(10) 3. Use Cramer's Rule to solve the system below for the unknown functions $u_{1}(x)$ and $u_{2}(x)$.

$$
\begin{aligned}
& u_{1} \sin x+u_{2} \cos x=0 \\
& u_{1} \cos x-u_{2} \sin x=e^{x}
\end{aligned}
$$

(10) 4. What is the correct form of y_{p} to use when finding a particular solution to the equation $y^{\prime \prime}+y=x \cos x$ using the method of undetermined coefficients?
Do not compute the coefficients. Just write down the FORM of the particular solution. (For example, if the right hand side were x^{2}, the correct form of y_{p} would be $A x^{2}+B x+C$.)
(20) 5. Let

$$
A=\left[\begin{array}{rrr}
1 & 1 & -2 \\
0 & 1 & a \\
2 & 4 & -3
\end{array}\right]
$$

a) for what value(s) of a is $\operatorname{det} A \neq 0$.
b) Find all a such that the equation $A x=0$ has a nontrivial solution.
(20) 6. Find the general solution $y(x)$ to the differential equation

$$
y^{\prime \prime}+3 y^{\prime}+2 y=10 \sin x .
$$

(20) 7. Let $T: R^{4} \rightarrow R^{3}$ be defined by $T x=A x$ where

$$
A=\left[\begin{array}{rrrr}
1 & 1 & -1 & -3 \\
0 & 1 & 1 & -4 \\
2 & 2 & -2 & -6
\end{array}\right]
$$

Find a basis for $\operatorname{ker}(T)$. What is the dimension of $\operatorname{ker}(T)$?

