MATH 181, Final Exam

(25) **1.** Differentiate
$$\int_{-x}^{x} \frac{(t+1)^2}{1+t^5} dt$$
 with respect to x .

(50) 2. Compute the following integrals.

a)
$$\int \frac{x^3}{(1+x^2)^{1/3}} dx$$
 Hint: let $u = 1 + x^2$.
b) $\int \frac{1}{(1+x^2)^2} dx$ Hint: let $x = \tan \theta$.
c) $\int x^2 \ln x \, dx$
d) $\int \frac{x-2}{x^2-4x+8} \, dx$
e) $\int xe^{-2x} \, dx$

- (25) **3.** Let $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n} = x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots$ for x where the series converges.
 - a) For what values of x does the series converge? Find all of them and explain your reasoning.
 - **b)** Identify the function f(x) in non-series form.
- (30) 4. Find the solution to

$$\frac{dy}{dx} = y(1+y)$$

that satisfies the initial condition y(0) = 2.

(30) 5. Let $S = \sum_{n=1}^{\infty} \frac{1}{n^4}$. Find a number N, with proof, such that

$$\left| S - \sum_{n=1}^{N} \frac{1}{n^4} \right| < 10^{-3}.$$

Hint: Compare the error, $\sum_{n=N+1}^{\infty} \frac{1}{n^4}$, to an integral. Be sure to draw a proper graph along with your explanation.

(40) 6. Suppose f(0) = 0 and f(2) = 0, but f(1) = 5. Neither the first nor the second derivatives of f can have a small absolute value throughout (0, 2). Make this statement precise.