Math 428 Midterm Exam

Each problem is worth 25 points.

1. Assume that

$$S(x) = \sum_{n=1}^{\infty} B_n \sin nx$$

is the sum of the Fourier sine series on $[0, \pi]$ for the function f(x) that is equal to one on the interval $[0, \pi]$.

- a) Write an integral formula for B_n and evaluate the integral.
- b) Graph the function that the Fourier sine series converges to on $[-2\pi, 2\pi]$, being careful at jumps and endpoints.
- c) Evaluate the sum

$$\sum_{n=1}^{\infty} {B_n}^2$$

Hint: The Fourier sine series is equal to the full Fourier series of the function on $[-\pi, \pi]$ you graphed in part (b).

2. Given a continuous *even* real valued function g(x) on $[-\pi, \pi]$, what trigonometric polynomial of the form

$$T_N(x) = A_0 + A_1 \cos x + A_2 \cos 2x + \dots + A_N \cos Nx$$

minimizes

$$\int_{-\pi}^{\pi} |g(x) - T_N(x)|^2 \, dx?$$

Explain.

3. Show that the three functions x, $\cos 2x$, and 1 are orthogonal on $[-\pi, \pi]$. (Simple facts about even and odd functions save work here.) If

$$f(x) = c_0 + c_1 x + c_2 \cos 2x,$$

write integral formulas for the coefficients c_n involving f(x) and the given functions.

4. Show that the function given in polar coordinates as $r^n \cos n\theta$ is a polynomial in x and y in Cartesian coordinates. Hint: DeMoivre's formula is useful here.

Formula sheet, OVER

Important Formulas

Fourier sine series for f(x) on $[0, \pi]$ is $\sum_{n=1}^{\infty} B_n \sin nx$ where $B_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx$

Full Fourier series for f(x) on $[-\pi, \pi]$ is $a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ where $a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$ $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$ $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$

The complex version is $\sum_{n=-\infty}^{\infty} c_n e^{inx}$ where $c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$

Facts: $c_0 = a_0$, and if $n \ge 1$: $c_n = \frac{a_n - ib_n}{2}$ and $c_{-n} = \frac{a_n + ib_n}{2}$

Bessel's inequalities (Parseval's identities with equality)

$$2a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \le \frac{1}{\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$$
$$\sum_{n=-\infty}^{\infty} |c_n|^2 \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$$