STEVEN ROBERT BELL
VITA
EDUCATION
B.S. University of Michigan, 1976
Ph.D. M.I.T., January, 1980
Thesis Advisor: Norberto Kerzman
Thesis Title: Applications of the Bergman projector
in the theory of functions of several complex variables.
PROFESSIONAL EXPERIENCE
Research Associate & Lecturer, M.I.T. 1980
Visiting Fellow, Princeton University 1980-81
Instructor, Princeton University 1981-82
Asst. Professor, Princeton University 1982-84
Visiting Assoc. Prof., Princeton Univ 1984-85
Assoc. Professor, Purdue University 1984-88
Prof. Assoc., Univ. de Bordeaux May, 1987
Professor, Purdue University 1988-
Graduate Chair, Purdue Math 1997-2000
Assoc. Head for Graduate Studies 2008-2012
HONORS
Distinguished Achievement in Applied Mathematics Award, Univ of Michigan, 1975
Distinguished Scholar Award, Univeristy of Michigan, 1976
NSF Postdoctoral Fellowship, 1980
Alfred P. Sloan Fellowship, 1984
Invited One Hour Address, American Mathematical Society, 1986
AMS Centennial Research Fellowship, 1988
Stefan Bergman Prize, 1990
Distinguished Alumnus Award, John Glenn High School, Westland, MI, 1991
Distinguished Lecturer on Frontiers of Math, Texas A&M University, 1993
Ruth and Joel Spira Award for Excellence in Undergraduate Teaching, 2005
Charles B. Murphy Outstanding Undergraduate Teaching Award, 2006
Purdue Teaching Academy, Inducted 2007
Purdue Book of Great Teachers, Inscribed 2008
Purdue Provost's Award for Outstanding Graduate Mentor, 2011
Fellow of the American Mathematical Society, 2012
Shoemaker Lectures, Univ. of Toledo, 2015
Ruth and Joel Spira Award for Excellence in Graduate Teaching, 2020
RESEARCH INTERESTS
Complex Variables, Partial Differential Equations
PUBLICATIONS
MATHSCINET
Publication list
- Bell S., Non-vanishing of the Bergman Kernel Function at Boundary
Points of Certain Domains in $C^n$, Math. Ann. 244; 69-74, 1979.
- Bell S. and Ligocka E., A Simplification and Extension of Fefferman's
Theorem on Biholomorphic Mappings, Invent. Math. 57; 283 -289, 1980.
- Bell S., Biholomorphic Mappings and the $\bar\partial$-problem, Ann.
of Math, 114; 103-113, 1981.
- Bell S., Proper Holomorphic Mappings and the Bergman Projection, Duke
Math. J. 48; 167-175, 1981.
- Bell S., Extendability of Proper holomorphic Mappings and Global
Analytic Hypoellipticity of the $\bar\partial$-Neumann Problem, Proc. of
the National Academy of Science 78(11); 6600-6601, 1981.
- Bell S. and Boas H.P., Regularity of the Bergman Projection in Weakly
Pseudoconvex Domains, Math. Ann. 257; 23-30, 1981.
- Bell S., Analytic Hypoellipticity of the $\bar\partial$-Neumann Problem
and Extendability of Holomorphic Mappings, Acta Math. 147; 107-116, 1981.
- Bell S., Smooth Bounded Strictly and Weakly Pseudoconvex Domains Cannot
be Biholomorphic, Bull. of the A.M.S. 4; 119-120, 1981.
- Bell S., The Bergman Kernel Function and Proper Holomorphic Mappings,
Trans. of the A.M.S. 270; 685-691, 1982.
- Bell S., A Representation Theorem in Strictly Pseudoconvex Domains,
Illinois J. Math 26; 19-26, 1982.
- Bell S., A Sobolev Inequality for Pluriharmonic Functions, Proc. of
the A.M.S. 85; 350- 352, 1982.
- Bell S., A Duality Theorem for Harmonic Functions, Michigan Math. J.
29; 123-128, 1982.
- Bell S., Proper holomorphic mappings between circular domains, Comm.
Math. Helvitici 57 (1982), 532-538.
- Bell S. and Catlin D.W., Boundary Regularity of Proper Holomorphic
Mappings, Duke Math. J. 49; 385-396, 1982.
- Bell S. and Bedford E., Proper Self Maps of Weakly Pseudoconvex
Domains, Math. Ann 261; 47-49, 1982.
- Bell S. and Catlin D.W., Proper Holomorphic Mappings Extend Smoothly
to the Boundary, Bull. of the A.M.S. 7; 269-272, 1982.
- Bell S., An Extension of Alexander's Theorem on Proper Self Maps of
the Ball in $C^n$, Indiana Math. J. 32; 69-71, 1983.
- Bell S., Regularity of the Bergman Projection in Certain Non-
pseudoconvex Domains, Pacific J. Math. 105; 273-277, 1983.
- Bell S., Bedford E. and Catlin D., Boundary Behavior of Proper
Holomorphic Mappings, Michigan Math. J. 30; 107-111, 1983.
- Bell S. and Bedford E., Boundary Continuity of Proper Holomorphic
Correspondences, Seminaire Dolbeault - Lelong - Skoda, 1982-83, Springer
Lecture Notes 1198, Springer Verlag, 1986.
- Bell S. and Bedford E., Holomorphic Correspondences of Bounded Domains
in $C^n$, Proceedings Colloque Analyse Complexe, Toulouse, 1983, Springer
Lecture Notes 1094; Springer Verlag, 1984.
- Bell S., Boundary Behavior of Proper Holomorphic Mappings Between Non-
pseudoconvex Domains, Amer. J. Math. 106; 639-643, 1984.
- Bell S., Local Boundary Behavior of Proper Holomorphic Mappings,
Proc. of Symposia in Pure Math. 41; 1-7, Amer. Math. Soc., Providence,
1984.
- Bell S., Boundary Behavior of Holomorphic Mappings, Several Complex
Variables: Proceedings of the 1981 Hangzhou Conference, Birkhauser, 1984.
- Bell S. and Boas H.P., Regularity of the Bergman Projection and
Duality of Holomorphic Function Spaces, Math. Ann. 267; 473-478, 1984.
- Bell S., Proper Holomorphic Mappings That Must be Rational, Trans. of
the A.M.S. 284; 425-429, 1984.
- Bell S. and Krantz S.G., Smoothness to the Boundary of Conformal Maps,
Rocky Mountain Math. J. 17; 23-40, 1987.
- Bell S., Proper Holomorphic Correspondences Between Circular Domains,
Math. Ann. 270; 393-400, 1985.
- Bell S. and Bedford E., Extension of Proper Holomorphic Mappings Past
the Boundary, Manuscripta Math. 50; 1-10, 1985.
- Bell S. and Bedford E., Boundary Behavior of Proper Holomorphic
Correspondences, Math. Ann. 272; 505-518, 1985.
- Bell S., Differentiability of the Bergman Kernel and Pseudo-local
Estimates, Math. Zeitschrift 192; 467-472, 1986.
- Bell S., Numerical Computation of the Ahlfors Map of a Multiply
Connected Planar Domain, J. of Mathematical Analysis and Applications,
120 (1986), 211-217.
- Bell S., Compactness of Families of Holomorphic Mappings up to the
Boundary, Proceedings of a conference held at Penn. State Univ., 1986,
Springer Lecture Notes 1268, Springer Verlag, 1987.
- Bell S., Extendibility of the Bergman Kernel Function, Proceedings of
a conference held at Univ. of Maryland, 1986, Springer Lecture Notes 1276,
Springer Verlag, 1987.
- Bell S., A Generalization of Cartan's Theorem to Proper Holomorphic
Mappings, J. Math. Pure Appl., 67 (1988), 85-92.
- Bell S., Baouendi M.S. and Rothschild L.P., CR Mappings of Finite
Multiplicity and Extension of Proper Holomorphic Mappings, Bull. A.M.S.
16 (1987), 265-270.
- Bell S., Weakly Pseudoconvex Domains with Non-Compact Automorphism
Groups, Math. Ann., 280 (1988), 403-408.
- Bell S., Baouendi M.S. and Rothschild L.P., Mappings of Three-
Dimensional CR Manifolds and Their Holomorphic Extensions, Duke Math. J.,
56 (1988), 503-530.
- Bell S., Local Regularity of CR Homeomorphisms, Duke Math. J., 57
(1988), 295-300.
- Bell S., Mapping Problems in Complex Analysis and the $\bar\partial$-
problem, Bull. of the AMS 22 (1990), 233-259.
- Bell S. and Catlin D., Regularity of CR Mappings, Math Zeitschrift 199
(1988), 357-368.
- Bell S. and Lempert L., A $C^\infty$ Reflection Principle in One and
Several Complex Variables, J. Diff. Geometry 32 (1990), 899-915.
- Bell S. and Narasimhan R., Proper holomorphic mappings of complex
spaces, Encyclopedia of Mathematical Sciences, Several Complex Variables
VI, Springer Verlag, pp. 1-38, 1991.
- Bell S. and Narasimhan R., Proper holomorphic mappings of complex
spaces, Complex Manifolds, Springer Verlag, pp. 1-38, 1998.
- Bell S., Solving the Dirichlet problem in the plane by means of the
Cauchy integral, Indiana Math. J., 39 (1990), 1355-1371.
- Bell S., The Szegö projection and the classical objects of
potential theory, Duke Math. J., 64 (1991), 1-26.
- Bell S., CR maps between hypersurfaces in $C^n$, Proc. of Symposia
in Pure Math. 52, part 1, pp. 13-22, Amer. Math. Soc., Providence, 1991.
- Bell S., The Cauchy transform, potential theory, and conformal
mapping, CRC Press, Boca Raton, 1992 (149 page book).
- Bell S., The Cauchy transform, the Szegö projection, the Dirichlet
problem, and the Ahlfors map, Contemporary Math., vol. 137, pp. 43-61,
1992.
- Bell S., Algebraic mappings of circular domains in $C^n$, Proceedings
of the special year in several complex variables at the Mittag-Leffler
Institute, 1987-88, Princeton University Press, Mathematical Notes,
vol. 38, pp. 126-135, 1993.
- Bell S., Unique continuation theorems for the $\bar\partial$-operator
and applications, J. of Geometric Analysis, 3 (1993), 195-224.
- Bell S., Complexity of the classical kernel functions of potential
theory, Indiana University Mathematics Journal 44 (1995), 1337-1369.
- Bell S., Simplicity of the Szegö, Bergman, and Poisson kernels,
Mathematical Research Letters 2 (1995), 267-277.
- Bell S., Recipes for classical kernel functions associated to a
multiply connected domain in the plane, Complex Variables Theory and
Applications 29 (1996), 367-378.
- Bell S., The role of the Ahlfors mapping in the theory of kernel
functions in the plane, Reproducing kernels and their applications,
Int. Soc. Anal. Appl. Comput. 3 (1999), 33--42.
International Society for Analysis, Applications and
Computation, 3. Kluwer Academic Publishers, Dordrecht, 1999.
- Bell S., Evidence for the transcendental nature of the objects
of potential theory in the plane, preprint.
- Bell S., A Riemann surface attached to domains in the plane and
complexity in potential theory, Houston J. Math. 26 (2000), 277-297.
- Bell S., Finitely generated function fields and complexity
in potential theory in the plane, Duke Math. J. 98 (1999), 187-207.
- Bell S., The fundamental role of the Szegö kernel in
potential theory and complex analysis, Journal für die reine und
angewandte Mathematik 525 (2000), 1-16.
- Bell S., Ahlfors maps, the double of a domain, and complexity
in potential theory and conformal mapping, Journal d'Analyse
Mathematique 78 (1999), 329-344.
- Bell S., Complexity in complex analysis, Advances in Math. 172
(2002), 15-52.
- Bell S., Möbius transformations, the Carathéodory metric, and
the objects of complex analysis and potential theory in multiply
connected domains, Michigan Math. J. 51 (2003), 351-362.
- Bell S., The Bergman kernel and quadrature domains in the plane,
Operator Theory: Advances and Applications 156 (2005), 61-78.
- Bell S., Quadrature domains and kernel function zipping, Arkiv
för matematik 43 (2005), 271-287.
- Bell S., Ebenfelt P., Khavinson D., Shapiro H., On the classical
Dirichlet problem with rational data, Journal d'Analyse Mathematique
100 (2006), 157-190.
- Bell S., Ebenfelt P., Khavinson D., Shapiro H., Algebraicity
in the Dirichlet problem in the plane with rational data, Complex
Variables and Elliptic Equations 52 (2007), 235-244.
- Bell S., Bergman coordinates, Studia Math. 176 (2006), 69-83.
- Bell S., Kaleem F., The structure of the semigroup of proper
holomorphic mappings of a planar domain to the unit disc, Computational
Methods and Function Theory 8 (2008), 225-242.
- Bell S., The Green's function and the Ahlfors map, Indiana Univ.
Math. J. 57 (2008), 3049-3063.
- Bell S., Deger E., Tegtmeyer T., A Riemann mapping theorem for
two-connected domains in the plane, Computational Methods and Function
Theory 9 (2009), No. 1, 323-334.
- Bell S., Density of Quadrature domains in one and several complex
variables, Complex Variables and Elliptic Equations 54 (2009), 165-171.
- Bell S., Björn Gustafsson, and Zachary Sylvan, Szegö coordinates,
quadrature domains, and double quadrature domains, Computational Methods
and Function Theory 11 (2011), No. 1, 25-44.
- Bell S., The Szegö kernel and proper holommorphic mappings to a
half plane, Computational Methods and Function Theory 11 (2011), No. 1,
179-191.
- Bell S., An improved Riemann mapping theorem and complexity in
potential theory, Arkiv för matematik 51 (2013), 223-249.
- Bell S., M.M. Schiffer, Explorer, in Menachem Max Schiffer:
Selected Paers, Volume 1, Contemporary Mathematicians, Peter Duren
and Lawrence Zalcman, editors, page 19, Springer,
New York, 2013, DOI 10.1007/978-0-8176-8085-5_7.
- Bell, S., Timothy Ferguson, Erik Lundberg, Self-commutators
of Toeplitz operators and isoperimetric inequalities,
Mathematical Proceedings of the Royal Irish Academy 114 (2014) 1-18.
- Bell, S., B. Ernst, S. Fancher, C. Keeton, A. Komanduru,
E. Lundberg, Spiral Galaxy Lensing: A model with twist,
Mathematical Physics, Analysis, and Geometry 17 (2014), 305-322.
- Bell, S., The Dirichlet and Neumann and Dirichlet-to-Neumann
problems in quadrature, double quadrature, and non-quadrature
domains, Analysis and Mathematical Physics 5 (2015), 113-135,
DOI 10.1007/s13324-014-0089-6.
- Bell, S., The Cauchy transform, potential theory, and conformal
mapping, 2nd Edition, CRC Press,Taylor and Francis, Boca Raton, 2015
(209 page book).
- Bell, S., The adjoint of a composition operator via its action
on the Szegö kernel, Analysis and Mathematical Physics 8(2) (2018),
221-236, DOI 10.1007/s13324-018-0215-y.
- Bell, S., The Cauchy integral formula, quadrature domains,
and Riemann mapping theorems, Computational Methods and Function
Theory 18(4) (2018), 661-676.
- Bell, S. and Luis Reyna de la Torre, Something about Poisson
and Dirichlet, Chapter 1 in Encyclopedia of Complex Analysis,
Steven G. Krantz, editor, CRC Press, Boca Raton, FL, 2022, 1-17.
ISBN: 9781138064041; 9781032202105; 9781315160658
- Bell, S. and Björn Gustafsson,
Ruminations on Hejhal's theorem about the
Bergman and Szegö kernel, Analysis and Mathematical Physics {\bf
12} (2022), no.~1, Paper No.~24, 15~pp.
- Bell, S., Real algebraic geometry of real algebraic Jordan curves
in the plane and the Bergman kernel, Analysis Mathematica {\bf 48}
(2022), no.~2, 331-345.
- Bell, S., Just analysis: The Poisson-Szegö-Bergman kernel,
Journal of Geometric Analysis {\bf 33} (2023), no.~1, Paper No.~9, 23~pp.
REU STUDENTS
Seth Streitmatter, Summer 2002
Jason Anema, Summer 2003
Damir Dzhafarov, Summer 2004
Matt Barrett, Amber Meyerratken, Joey Steenbergen, Jamie Weigandt, Summer 2006
Zachary Sylvan, Spring and Summer 2008
Joshua Hunsberger, Alex Krzywda, John Mason, Summer 2009
Roenika Wiggins, Summer 2011
Brett Ernst, Sean Fancher, Abi Komanduru (co-mentored with Erik Lundberg), Summer 2012
Jack VanShaik, Summer 2017
Luis Reyna de la Torre, Summer 2018
Henry Howard Stewart III, Summer 2019
Ph.D. STUDENTS
Wilhelm Klingenberg, Jr., 1987
Peiming Ma, 1991
Moonja Jeong, 1991
Moohyun Lee, 1992
Young-Bok Chung, 1993
Khalid Filali Adib, 1994
Anthony Thomas, 1994
Zhenjun Hu, 1996
Loredana Lanzani, 1997 (Outstanding Alumna Award, 2011)
Thomas Tegtmeyer, 1998
Faisal Kaleem, 2006
Kuan Tan, 2007
Ersin Deger, 2007
George Hassapis, 2008
Alan Legg, 2016
Raechel Polak, 2022
Leah McNabb, 2024
OTHER ACTIVITIES
-
Associate Editor for the "Journal of Geometric Analysis," 1990-2013
-
Associate Editor for the "Proceedings of the American Mathematical
Society," 1997-2001
-
Editor for MacGraw-Hill's "Walter Rudin Book Series of
Advanced Mathematics Texts"
-
AMS Committee on Publications 2012-2015
-
Faculty Advisor for the Purdue University Juggling Club 1986-2014