
RLC-Circuits

<u>Goal</u>: Investigate the charge on a capacitor in an *RLC* circuit with varying voltage.

Tools needed: ode45, plot routines.

Description: If Q(t) = charge on a capacitor at time t in an *RLC* circuit (with *R*, *L* and *C* being the resistance, inductance and capacitance, respectively, and E(t) = applied voltage), then Kirchoff's Laws gives the following 2^{nd} order differential equation for Q(t):

Questions: Assume L = 1, $C = \frac{1}{4}$, R = 2 and $E(t) = 10 \cos wt$.

- (1) Use **ode45** to plot the solution of (*) with Q(0) = Q'(0) = 0 over the interval $0 \le t \le 30$, for these values of w : w = 1.0, 2.0, 4.0, 10.0, 20.0.
- (2) For each of these 5 plots, find the largest value of |Q(t)| over $10 \le t \le 30$ and fill in the table:

w	Max value of $ Q(t) $ on $10 \le t \le 30$
1.0	
2.0	
4.0	
10.0	
20.0	

(3) Does increasing w appear to increase the maximum charge |Q(t)| on the capacitor?

Spring-Mass System	RLC CIRCUIT
mx''+cx'+kx=F(t)	$LQ''+RQ'+rac{1}{C}Q=E(t)$
x = Displacement	Q = Charge
x' = Velocity	Q' = I = Current
m = Mass	L = Inductance
c = Damping constant	R = Resistance
k = Spring constant	$\frac{1}{C} = (\text{Capacitance})^{-1}$
F(t) = External force	$\tilde{E}(t) = $ Voltage

<u>Remark</u>: There is an analogy between spring-mass systems and *RLC* circuits given by :