Phase Portraits for a linear system: $\mathbf{x}' = A \mathbf{x}$

Given the general solution to $\mathbf{x}' = \mathbf{A}\mathbf{x}$, the following describes how to sketch solutions (trajectories) of the system. A plot of the trajectories of a given homogeneous system

$$\mathbf{x}' = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \mathbf{x}$$

is called a <u>Phase Portrait</u> of the system. To sketch the phase portrait, we need to find the corresponding eigenvalues λ_1 , λ_2 and eigenvectors of the matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and then there are various cases.

<u>Useful Fact</u>: If λ_1 , λ_2 are the eigenvalues of $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then (i) det $A = (ad - bc) = \lambda_1 \lambda_2$

(ii) trace $A = (a + d) = \lambda_1 + \lambda_2$

 \star This fact is needed in order to use the ${f Stability}\;{f Diagram} \leftarrow$ Click here

Recall, the method to solve linear systems $\mathbf{x}' = A\mathbf{x}$ using eigenvalues and eigenvectors:

<u>The Eigenvalue Method</u>: If λ is an eigenvalue of the matrix A and \mathbf{v} a corresponding eigenvector, then $\mathbf{x}(t) = e^{\lambda t} \mathbf{v}$ is a solution to $\mathbf{x}' = A\mathbf{x}$ (#).

Case 1 $\lambda_1, \lambda_2, \dots, \lambda_m$ are real and distinct eigenvalues (each with multiplicity 1). If $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots \mathbf{v}^{(m)}$ are their corresponding eigenvectors $\implies m$ independent solutions to (#): $\mathbf{x}^{(1)}(t) = e^{\lambda_1 t} \mathbf{v}^{(1)}, \ \mathbf{x}^{(2)}(t) = e^{\lambda_2 t} \mathbf{v}^{(2)}, \ \dots \mathbf{x}^{(m)}(t) = e^{\lambda_m t} \mathbf{v}^{(m)}$

Case 2 $\lambda = \alpha + i\beta$ is a complex eigenvalue.

If **v** is a corresponding eigenvector, then 2 independent real-valued solutions to (#) $\mathbf{x}^{(1)}(t) = \Re e \left\{ e^{\lambda t} \mathbf{v} \right\} \text{ and } \mathbf{x}^{(2)}(t) = \Im m \left\{ e^{\lambda t} \mathbf{v} \right\}$

Case 3 λ has multiplicity 2, but only one independent eigenvector **v** (i.e., λ has defect d = 1). Then 2 independent solutions to $\mathbf{x}' = A \mathbf{x}$ are as follows:

> $\mathbf{x}^{(1)}(t) = e^{\lambda t} \mathbf{v} \quad \checkmark$ where $(\mathbf{A} - \lambda \mathbf{I}) \mathbf{w} = \mathbf{v}$ $\mathbf{x}^{(2)}(t) = t e^{\lambda t} \mathbf{v} + e^{\lambda t} \mathbf{w} \quad \checkmark \checkmark$

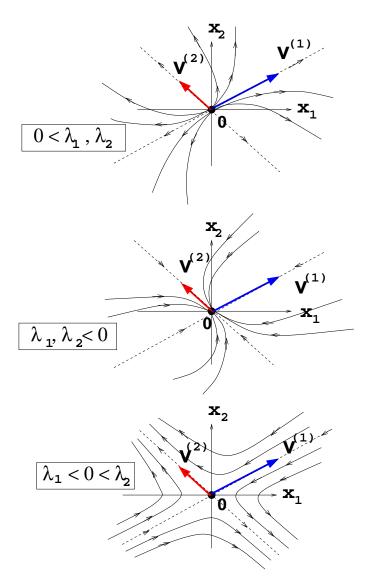
Phase Portraits: $\mathbf{x}' = A \mathbf{x} (*)$

 $\boxed{\mathbf{I}} \quad \underline{\lambda_1, \lambda_2} \text{ are real and distinct} : \text{ If } \mathbf{v}^{(1)}, \mathbf{v}^{(2)} \text{ are eigenvectors corresponding to } \lambda_1 \text{ and } \lambda_2, \\ \text{respectively} \Rightarrow \mathbf{x}^{(1)}(t) = e^{\lambda_1 t} \mathbf{v}^{(1)} \text{ and } \mathbf{x}^{(2)}(t) = e^{\lambda_2 t} \mathbf{v}^{(2)} \text{ are independent solutions and hence general solution of (*) is } \boxed{\mathbf{x}(t) = C_1 \mathbf{x}^{(1)}(t) + C_2 \mathbf{x}^{(2)}(t)} \text{ and hence since } \lambda_1 < \lambda_2 :$

$\mathbf{x}(t) = \underbrace{C_1 e^{\lambda_1 t} \mathbf{v}^{(1)}}_{\mathbf{V}} + \underbrace{C_2 e^{\lambda_2 t} \mathbf{v}^{(2)}}_{\mathbf{V}}$	
dominates	dominates
as $t \longrightarrow -\infty$	as $t\longrightarrow\infty$

(0,0) is an <u>unstable node</u> (occurs when $\lambda_1 > 0, \lambda_2 > 0$)

(0,0) is a <u>stable node</u> (occurs when $\lambda_1 < 0, \lambda_2 < 0$)

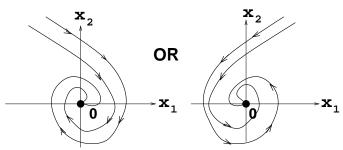


(0,0) is a <u>saddle point</u> (occurs $\iff \det A = \lambda_1 \lambda_2 < 0$)

The *Eigenlines* are determined by the eigenvectors \mathbf{v}_1 and \mathbf{v}_2 in above phase portraits

II $\lambda_1 = \alpha + i\beta$: If **v** is a complex e-vector corresponding to λ_1 then \Longrightarrow $\mathbf{x}^{(1)}(t) = \Re e\{e^{\lambda_1 t}\mathbf{v}\}$ and $\mathbf{x}^{(2)}(t) = \Im m\{e^{\lambda_1 t}\mathbf{v}\}$ are real-valued solutions and hence general solution of (*) is $\mathbf{x}(t) = C_1 \mathbf{x}^{(1)}(t) + C_2 \mathbf{x}^{(2)}(t)$.

If say $\alpha < 0$:



(Test a convenient point to decide which)

(0,0) is a <u>spiral point</u>. If $\alpha < 0$ it is *asymptotically stable*; if $\alpha > 0$ is it said to be *asymptotically unstable*; if $\alpha = 0$ then (0,0) is called a center point.

 $\begin{array}{|c|c|c|c|c|c|c|} \hline \mathbf{III} & \underline{\lambda_1 = \lambda_2} : & \text{If there is only one linearly independent eigenvector corresponding to } \lambda_1 \text{, then solutions to} \\ & \mathbf{x}' = A \, \mathbf{x} & \text{are} & \mathbf{x}^{(1)}(t) = e^{\lambda_1 t} \, \mathbf{v} \text{ and } \mathbf{x}^{(2)}(t) = t \, e^{\lambda_1 t} \, \mathbf{v} + e^{\lambda_1 t} \, \mathbf{w} \\ & \text{, where} \end{array}$

$$(A - \lambda_1 I) \mathbf{v} = \mathbf{0}$$

(A - \lambda_1 I) \mathbf{w} = \mathbf{v}

(**v** is an eigenvector of A, while **w** is a "generalized eigenvector" of A)

The general solution of the system (*) is $\mathbf{x}(t) = C_1 \mathbf{x}^{(1)}(t) + C_2 \mathbf{x}^{(2)}(t)$ and hence: $\mathbf{x}(t) = C_1 e^{\lambda_1 t} \mathbf{v} + C_2 \left[\underbrace{t e^{\lambda_1 t} \mathbf{v}}_{t} + e^{\lambda_1 t} \mathbf{w} \right]$

dominates
as
$$t \longrightarrow +\infty$$

If say $\lambda_1 < 0$:

