2.2 2.2
8. $x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ $(-b+\sqrt{b^2-4ac})$ $\frac{(-b+\sqrt{b^2-4ac})}{(-b+\sqrt{b^2-4ac})} = \frac{-2c}{-b+\sqrt{b^2}}$ $\frac{-2c}{-b+\sqrt{b^2-4ac}}$ works if $b>0$ and $x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$ $(-b-\sqrt{b^2-4ac})$ $\frac{(-b-\sqrt{b^2-4ac})}{(-b-\sqrt{b^2-4ac})}=\frac{-2c}{-b-\sqrt{b^2}}$ $\frac{-2c}{-b-\sqrt{b^2-4ac}}$ works if $b < 0$. 9.(a) $\sqrt{x^2+1} - x = (\sqrt{x^2+1} - x) \frac{\sqrt{x^2+1}+x}{\sqrt{x^2+1}+x} = \frac{1}{\sqrt{x^2+1}+x}.$ (b) log $x - \log y = \log \frac{x}{y}$ (e)Using the Taylor series for e^x , $e^x - e = \sum_{k=0}^{\infty} \frac{x^k}{k!} - e$ (f)log $x - 1 = \log x - \log 10 = \log \frac{x}{10}$ $(h)\sin x - \tan x = \sin x - \frac{\sin x}{\cos x} = \frac{\sin x \cos x - \sin x}{\cos x} = \frac{\sin x(\cos x - 1)}{\cos x} = \frac{\sin x}{\cos x}(\cos x - 1)\frac{\cos x + 1}{\cos x + 1} = \frac{(\tan x)(-\sin^2 x)}{\cos x + 1}$ $\cos x+1$ 15.(a) To make $f(x)$ continuous at $x = 0$, $f(0) = \lim_{x\to 0} f(x)$. Hence $f(0) = \lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{1-\cos x}{x}$ $\lim_{x\to 0} \frac{\sin x}{1} = 0$, by LHospital's Rule.

(b)
$$
x = 2k\pi
$$
, $k \in \mathbb{Z}$. (since $\cos 2k\pi \approx 1$)

$$
(c) f(x) = \frac{1 - \cos x}{x} = \frac{1 - \cos x}{x} \cdot \frac{1 + \cos x}{1 + \cos x} = \frac{1 - \cos^2 x}{x(1 + \cos x)} = \frac{\sin^2 x}{x(1 + \cos x)}
$$

(d)With the formula in (c), we have diffuculty when $\cos x \approx -1$. We can use original equation to avoid this difficulty.

2.3

2.3

7. Characteristic Equation: $x^2 - 2x - 1 = 0$. Roots are $x = 1 \pm \sqrt{ }$ ion: $x^2 - 2x - 1 = 0$. Roots are $x = 1 \pm \sqrt{2}$. Hence a general solution is A Characteristic Equation: $x^2 - 2x - 1 = 0$. Roots are $x = 1 \pm \sqrt{2}$. Hence a general solution is $x_n = A(1+\sqrt{2})^n + B(1-\sqrt{2})^n$. This recurrence relation is not a good way to compute x_n since $1+\sqrt{2} > 1$.

8. Characteristic Equation: $x^2 - x - 1 = 0$. Roots are $x = \frac{1 \pm \sqrt{5}}{2}$. Using initial conditions, then $r_n = \frac{(1+\sqrt{5})^{n+1}-(1-\sqrt{5})^{n+1}}{\sqrt{5}2^{n+1}}$. Hence,

$$
\frac{2r_n}{r_{n-1}} = \frac{2[(1+\sqrt{5})^{n+1} - (1-\sqrt{5})^{n+1}]}{\sqrt{5}2^{n+1}} \frac{\sqrt{5}2^n}{(1+\sqrt{5})^n - (1-\sqrt{5})^n} = \frac{(1+\sqrt{5})^{n+1} - (1-\sqrt{5})^{n+1}}{(1+\sqrt{5})^n - (1-\sqrt{5})^n}
$$

$$
= \frac{(1+\sqrt{5}) - (1-\sqrt{5})\left(\frac{1-\sqrt{5}}{1+\sqrt{5}}\right)^n}{1-\left(\frac{1-\sqrt{5}}{1+\sqrt{5}}\right)^n} \to 1+\sqrt{5} \text{ as } n \to \infty \text{ since } 0 < \frac{1-\sqrt{5}}{1+\sqrt{5}} < 1.
$$

9. Since $\frac{1+\sqrt{5}}{2} > 1$, the recurrence relation doesn't provide a stable means for computing r_n . Actually, with given inital conditions, $r_n = \left(\frac{1-\sqrt{5}}{2}\right)^{n-1}$. And this goes to 0 as n goes to infinity.