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6.7

6. We know that ex =
∞∑
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14. We know that ln(1− x) =
∞∑
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)
.
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(by Theorme2)

lim
n→∞

|xn+1/(n + 1)2|
|xn/n2|

= lim
n→∞

|x| n2

(n + 1)2
= |x|. By the ratio test, the radius of convergence is 1. Hence

we can compute f(0.001) by using this series. But | − 2| > 1, so we can’t use this series to compute

f(−2). Instead we can compute it by using Taylor series of
ln(1− x)

x
at x = 2
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