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Motivations of A Posteriori Error Estimation

e Error Control or Solution Verification

e Adaptive Control of Numerical Algorithims
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Error Control in Numerical PDEs

e continuous problem

Lu=f 1in

e discrete problem

ETUT :fT

e error control or solution verification Given a tolerance e

| <e

lu = ur
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A Priori Error Estimation

e a priori error estimation (convergence)

| <C(u)hs =0 ash, —0

I = ur|

e error control Given a tolerance e

€

1/«
— <
o) = luulse

C’(u)h‘;ﬁge — th(
e how to get the a priori error estimation?

discrete stability 4+ consistency (smoothness)

— convergence
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A Posteriori Error Estimation

e a posteriori error estimation
compute a quantity n(u, ), estimator, such that

lw —u| < Crn(u,) (reliability bound)

where (. is a constant independent of the solution

e error control Given a tolerance e

for known C,., n(u,) <e/C,

e how to get the reliability bound?

stability
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Adaptive Control of Numerical Algorithms

If the current approximation u.. is not good enough

e adaptive global mesh or degree refinement

e adaptive local mesh or refinement
compute quantities 7, (u..), indicators, for all K € 7 such that

Ne < Ceflu—u|wg (efficiency bound)
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Adaptive Mesh Refinement (AMR) Algorithm
e AMR algorithm

Given the data of the underlying PDEs and a tolerance e,
compute a numerical soltuion with an error less than e.

(1) Construct an initial coarse mesh 7

. Set k=0.
(2) Solve the discrete problem on 7.

For each element K € 7y,

compute an error indicator nx.
If the global estimate 7 is less than €, then stop.

Otherwise, locally refine the mesh 7, to construct the next
mesh Tr11. Replace k by k41 and return to Step (2).
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Adaptive Mesh Refinement (AMR) Algorithm

e AMR algorithm

Solve — Estimate — Mark — Refine
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A Posteriori Error Estimation

e computation of the a posteriori error estimation

e indicator n, — a computable quantity for each K € T

1/2
e estimator n= ( S 77?{)

KeT

e theory of the a posteriori error estimation

e reliability bound for error control

lw = urll < Crn

o efficiency bound for efficiency of AMR algorithms

Ne < Cellu — umeK VKeT
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Construction of Error Estimators

e a difficult task

1/2
el = ( > mew%() _
\

KeT

e possible avenues

e residual estimator
r=Le=Lu—u;)=f—Lu,
e Zienkiewicz-Zhu (ZZ) estimator
lo, = Vu,|
e duality estimator

la=Y2 (o +aVu, )| with V.o =Ff
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Interface Problems
e clliptic interface problems
—V - (a(x)Vu)=f inQcCR?

u=¢g onlp and n-:(a(x)Vu)=h only

where a(x) is positive piecewise constant w.r.t Q = U™ ,;:

a(x) =a; >0 in

e sSmoothness
uwe H'TP(Q)

where 3 > 0 could be very small.
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A Test Problem with Intersecting Interfaces

o the Kellogg test problem

QO=(-1,1)2, Tp=090 f=0

161.448 in (0,1)*2U (—1,0)?
and «a(x) =
1 in Q\ ([0,1]2 U [-1,0]?)

e exact solution
u(r,0) = r"1u(0) € H'7°(Q)

with u(6) being smooth
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Explicit Residual Estimator

e conforming finite element approximation

find u. € V.. C V= H}(R) such that

a(u,,v)= f(v) VoveV_

e residual functional
r(v) fv) —alu,, v)=alu—u,,v) VoeV
a(u —u,,v—uvy) = Z/onu—u -V(v—wvr)de

KeT

Z (f +div(aVu,))(v—uv;)dz +Z [ne - (aVu,)]dv—uvr)ds

KeT’ K ecEY €
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Explicit Residual Estimator

e 1° representation of the residual functional

= 3 [ (FdivaVu) o o) de + Y [ [ne - (@Vu,)lv —ovr) ds

Ke K ecEY €

e global reliability bound

1/2
u-u e s Hl<e (Zw)

0£ve(V, -1 ror

e examples of the explicit residual indicator

e Babuska & Rheinboldt 79 (1D), Babuska & Miller 87 (2D)

, 1
ng = hilf+div(aVu,)|7 b > hellne - (aVu, ]2
ecOK
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interface test problem

exact solution

u(r,0) = rtu(0) e H-17¢(Q)
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Explicit Residual Estimator

e global reliability bound

1/2
Ju—u l<C  sup 'M (Z w)

0Fve(V, -] KeT

e examples of the explicit residual indicator

e Babuska & Rheinboldt 79 (1D), Babuska & Miller 87 (2D)

_ 1
e = RS +av@Vu) 4 Y bl (@Vu,)])3
ecOK

e Bernardi & Verfurth 2000, Petzoldt 2002

1 . 1 1
N = ho|la”2(f + div(aVu,))|7 + 5 > hellac *[n
ecOK
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meshes generated by BM and BV indicators
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Robust Efficiency and Reliability Bounds
(Bernardi & Verflrth 2000, Petzoldt 2002)

e robust efficiency bound

nx < Clla?V(u —u,)| 0wk

where C is independent of the jump of «

e Quasi-Monotonicity Assumption (QMA):

any two different subdomains ; and Qj, which share at least one
point, have a connected path passing from QZ- to Qj through
adjacent subdomains such that the diffusion coefficient «a(x) is

monotone along this path.

e robust reliability bound under the QMA, there exists a
constant C independent of the jump of a such that

12V (u —u, oo < Cn
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Robust Estimator for Nonconforming Elements
without QMA in both Two and Three Dimensions
(C.-He-Zhang, Math Comp 2017 and SINUM 2017)

for nonconforming linear elements, let e =u —wu.,. and let

hk
Nr,K — \/T—KHfo |O,K7 Njn,F =

aF,H

hr
e INndicator and estimator

| 1
=) nk With ni=nlx+o > (e +05p)
KeT Fe&

and Nju,F = |lun]llo,. 7 with

e I? representation of the error in the energy norm

la'2Vhel* =) (fie - GI)K—Z/ jnpfe —e}ds=y | {aVen}y[u,]d
F el F

KeT Fe&r
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Robust Estimator for Discontinunous Elements
without QMA in both Two and Three Dimensions
(C.-He-Zhang, SINUM 2017)

for discontinuous elements, let e =u —u and let

h
r K = —|fk—1 + V- (aVu,)|o.x,
n \/@H ( Al
e INdicator and estimator
. 1
=) mic WIth mie =i+ 5 Y (e 05w p)
KeT Fee

e L? representation of the error in the energy norm

a2V el|? = Z (fxm1 + V- (aVu,),e —éx)rx — Z/ Jn.ri{e —ex}Vds
F

KeT Fe&r
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Zienkiewicz-Zhu (ZZ) Error Estimators

o ZZ estimators

£G — HpT o VU’TH
where p_ e U, C C’(Q)? is a recovered gradient

e recovery operators

e Zienkiewicz & Zhu estimator (87, cited 2600 times)
1

B |w. |

Vu,de VzeN

Wz

p, ()

e L>-projection  find p_ € U" such that

lp. —Vu,| = ,Yrgi(r]lT |y = Vu,|

e Other recovery techniques
Bank-Xu, Carstensen, Schatz-Wahlbin, Z. Zhang, ...
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Zienkiewicz-Zhu (ZZ) Error Estimators

e recovery-based estimators

gzz — HpT o VUTH

e theory

e saturation assumption: there exists a constant 5 € [0,1) s.t.

IVu—p )l <Bl[Vu—Vu,|

e efficiency and reliability bounds

Carstensen, Zhou, etc.
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Zienkiewicz-Zhu (ZZ) Error Estimators

e Pro and Con

+ simple
universal
asymptotically exact

inefficiency for nonsmooth problems
unreliable on coarse meshes

higher-order finite elements, complex systems, etc.
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3443 nodes mesh generated by 7nzz
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Why Does It Fail?
e true gradient and flux for interface problems

Vu ¢ C°(Q)?

e Fecovery space

p, € CO(Q)*

e the reason of the failure

approximating discontinuous functions by continuous functions
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How to Fix It~
(C.-Zhang, SINUM (09, 10, 11), C.-He-Zhang, CMAME 17)

e true gradient and flux

we HY(Q) = Vue H(curl,Q)

o =—aVu e H(div,Q)
e conforming elements

u, € H(Q) = Vu., € H(curl,Q)
— 6, € RT, or BDM,
o, =—aVu,. ¢ H(div,Q)

e mixed elements  gradient Vu = —a~ o € H(div,Q)
u,. € L*(Q),0.. € H(div,Q)

— p.€D; or Ny
p.=—a lo,. ¢ H(curl,Q)
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- I
1 —a—n,/ 18¥29 u, :
17 =7 u) [|,7 11427 ull |

R ”Ah’z

0/ WYl and  YET - u g | I8V ),

3557 nodes mesh generated by &g with aa = 0.1
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Summary of Improved ZZ Error Estimators

e Pro and Con

+ simple
universal
asymptotically exact

unreliable on coarse meshes
higher-order finite elements, complex systems, etc.
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Estimators through Duality

e early work

e HlavacCek, Haslinger, NecCas, and Lovisek,
Solution of Vatiational Inequality in Mechanics,
Springer-Verlag, New York, 1989. (Translation of 1982 book.)

e Ladevéze-Leguillon (83),
Demkowicz and Swierczek (85),
Oden, Demkowicz, Rachowicz, and Westermann (89)

e recent work
e Vejchodsky (04)
e Braess-Schoberl (08), ...

e Cai-Zhang (12), with Cao, Falgout, He, Starke, ...
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Estimators through Duality
(Equilibrated Residual Error Estimator)
(Ladevéze-Leguillon 83, Vejchodsky 04, Braess-Schoberl 08)

e Prager-Synge identity for u, u,. € H5(Q)

A2V (uy — )2+ [[AV2(Vu+ A7) |2 = [[AV2(Vu, + A7 )12

for all 7 € En(f) = {7 € Hy(div; Q) |V - 7 = f}

(V(u, —u), AVu+71))=—(u —u, V- (AVu)+V-7)) =0

e guaranteed reliable estimator g, =—-A"'Vu,

JAY2V (uw—u )| < (1) = A2 (1 —6,) ¥V TeXNn()
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Equilibrated Residual Error Estimator

e explicit/local calculation of numerical flux Assume that f is
piecewise polynomial of degree p —1 w.r.t. T

e explicit calculation of numerical flux for linear element
(Braess-Schoberl 08)

&BS EEN(f)mRTO

e solving a vertex patch mixed problem for p-th order element
(Braess-Pillwein-Schoberl 09)

OA.BPS S ZN(f) A Rrp—l
e p-robust efficiency
N (O pps) < Co HA1/2V(U - uT)HwK

where C, > 0 is a constant independent of p
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e Non-robustness on constant-free estimator

for singular-perturbed reaction- or convection-diffusion problems
(Verflrth 09, SINUM)

for interface problems (C.-Zhang, SINUM 2012)

NATZ(V u -V u) I

0

—_
o
=)

*g

-
oI

IAY2(V u-Vu )l and &

1
10°
number of nodes

Figure 1: mesh generated by n,, Figure 2: error and estimator
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Robust Equilibrated Residual Error Estimator
e Prager-Synge identity for all 7 € Xn(f)

|AY2Y (u—up) |2 + [[AV2(Vu+ A7) |2 = [JATY2 (1 = 6) |

e guaranteed reliable estimator

A2V (u—u )l < a(r)= A2 (r =) ¥ TeXn(f)

< inf ||A"Y%(r -6
< TelgN(f)ll (7 —0,)

e discrete equilibrated flux

4726, )= min A7)
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Equilibrated Residual Error Estimator
(C.-Zhang, SINUM 2012)

e explicit/local calculation of numerical flux Assume that f is
piecewise polynomial of degree p —1 w.r.t. T

e explicit calculation of numerical flux for linear element

&CZ e ZN(f) N Rl

e solving a vertex patch problem for p-th order element
0o, € XN(f)NELp—
e o and p-robust efficiency
Nk (0cz) < Ce ||A1/2V(u — U)o

where C, > 0 is a constant independent of o and p
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Equilibrated Residual Error Estimator

12
IA"S(Vu-V uh) II0 and

1
10°
number of nodes

Figure 4. error and estimator

Figure 3: mesh generated by 7,
Ccz
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Estimators through Duality

e Minimization problem:

Ju)= min J(v
() vEHT (Q) ()

where J(v) =

(AVwv, Vu) — f(v) is the energy functional

1

2

e dual problem:

J ()= max J' (T
(o) Flax (7)

= —3 (A_lr, T) is the complimentary functional and

EN(f) = {’T - HN(diV; Q)‘VT = f}

e duality theory: (Ekeland-Temam 76)
J(u)=J"(e) and o=-AVu

’IE of Mathematics, Purdue University Slide 38, March 16, 2017



ﬁe error
= 3() =3[
=3(w) -3

< J(w) - 3*(_%;3
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Summery on Estimators through Duality

e guaranteed reliability bound

where 77(0'02) = (J(UT) — J*(GCZ))

e robust local efficiency bound for A =«al

77K(0'cz) < Ce ||041/2v(u _ uT)”O,wK
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Equilibrated Error Estimator for Discontinuous Elements
(C.-He-Starke-Zhang)

e continuous elements let u¢ € H} () be an approximation

Al/QV e < nf A_1/2 =
| (w—ur)ll < dnf | (T — o)l

where . = —AVu’ is the numerical flux

e discontinuous elements let u. € H;(7) be an approximation
| AY2V (= w2

inf A_1/2 = 2 inf A1/2 Vo — f 2
TEgIN(f)II (T —0.) +U€II%(Q)H (Vo —p_)|

inf AV (=& )2+ inf AYV2(~ —
B AL N RG]

where 6, = —AVu, and p_ = Vu,_ are the numerical flux and
gradient, respectively.
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Equilibrated Error Estimator for Non-conforming Elements
of Odd Order

e discontinuous elements let e =u—u’°

A2, |12 i f A2+ _ 5 21 inf AY2(Ty — B )12
[Ael? < n AT e it A (V0]

inf A Y2 — 6 )12 + inf A2 (~ —
N e AT N RG]

e explicit calculation of an equilibrated flux for odd order

a"r GZN(f)mRTP—l

e explicit calculation of a gradient

p.. € Hp(cur,Q) N NE, 1
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Equilibrated Error Estimator for Non-conforming Elements
of Odd Order

e discontinuous elements let e = u — u;”c

A2, o2 < i f A2+ _ 5 21 inf AY2(Ty — 5 )12
[Ael? < n AT P it A (V0 =)

inf A Y2 6 )2 + inf A2 (~ —
B AL L ELL G ]

e iNndicator and estimator

=Y nk Wwith 0k =nl g+
KeT

where 7, k and n, g are given by

o = |A72(6, =6, )lox and m,x =I[|AY2(p. — P )lo.x
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Equilibrated Error Estimator for Non-conforming Elements
of Odd Order

e INndicator and estimator

=) nk with ni=nlg+1k
KeT

where 7, k and n, g are given by

Mo = |A7V2(6, — 6 )|lox and  mpx =AY (p. — P ok

e a-robust efficiency without QMA

<C, (HAl/QV(u —u)||wgx + osc(f, wK))
where C, > 0 is a constant independent of «
e a-robust reliability without QMA

|AY2V (u — w29 || < Cr (0 + osc(f,T))

where C, > 0 is a constant independent of «
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Kellogg’s Problem for Crouzeix-Raviart Element
conforming error 7, =0

Energy error

Figure 5: mesh generated by nxg  Figure 6: error and estimator n
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Poisson’s Equation on L-Shape Domain for Crouzeix-Raviart
Element

Energy error

D00
ZOZOZOZOZOZ0
RRRRRK

203

RIS
IR
00000

Figure 7: mesh generated by nxg  Figure 8: error and estimator n
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Summary
e estimators
e explicit residual: reasonable mesh, not efficient error control
e improved ZZ: ignoring equilibrium equation

e dual: the method of choice

e adaptive control of meshing (AMR)

e some “nice’” problems: many viable estimators

e challenging problems (layers, oscillations, etc) : a few
e error control

e asymptotic meshes: some smooth problems

e non-asymptotic meshes: 777

e challenging problems : 777
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Grand Computational Challenges

e complex systems

multi-scales, multi-physics, etc.

e computational difficulties
e oOscillations
interior/boundary layers
interface singularities
nonlinearity
777
e a general and viable approach

adaptive method + accurate, robust error estimation
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Adaptive Control of Numerical Algorithms

“If error is corrected whenever it is recognized as
such, the path to error is the path of truth”

by Hans Reichenbach, the renowned philosopher of science, in his
1951 treatise, The Rise of Scientific Philosophy
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