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Motivations of A Posteriori Error Estimation

• Error Control or Solution Verification

• Adaptive Control of Numerical Algorithms

Department of Mathematics, Purdue University Slide 4, March 16, 2017



Error Control in Numerical PDEs

• continuous problem

Lu = f in Ω find u ∈ V s.t. a(u, v) = f(v) ∀ v ∈ V

• discrete problem

LT uT = fT find uT ∈ VT s.t. a(uT , v) = f(v) ∀ v ∈ VT

• error control or solution verification Given a tolerance ε

|||u− uT ||| ≤ ε
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A Priori Error Estimation

• a priori error estimation (convergence)

|||u− uT ||| ≤ C(u)hα
T
→ 0 as hT → 0

• error control Given a tolerance ε

C(u)hα
T
≤ ε =⇒ hT ≤

(
ε

C(u)

)1/α

=⇒ |||u− uT ||| ≤ ε

• how to get the a priori error estimation?

discrete stability + consistency (smoothness)

=⇒ convergence
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A Posteriori Error Estimation

• a posteriori error estimation

compute a quantity η(uT ), estimator, such that

|||u− uT ||| ≤ Cr η(uT ) (reliability bound)

where Cr is a constant independent of the solution

• error control Given a tolerance ε

for known Cr, η(uT ) ≤ ε/Cr =⇒ |||u− uT ||| ≤ ε

• how to get the reliability bound?

stability
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Adaptive Control of Numerical Algorithms

If the current approximation uT is not good enough

• adaptive global mesh or degree refinement

• adaptive local mesh or degree refinement

compute quantities η
K

(uT ), indicators, for all K ∈ T such that

η
K
≤ Ce |||u− uT |||ωK

(efficiency bound)
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Adaptive Mesh Refinement (AMR) Algorithm

• AMR algorithm

Given the data of the underlying PDEs and a tolerance ε,

compute a numerical soltuion with an error less than ε.

(1) Construct an initial coarse mesh T0 representing sufficiently

well the geometry and the data of the problem. Set k = 0.

(2) Solve the discrete problem on Tk.

(3) For each element K ∈ Tk,

compute an error indicator ηK.

(4) If the global estimate η is less than ε, then stop.

Otherwise, locally refine the mesh Tk to construct the next

mesh Tk+1. Replace k by k + 1 and return to Step (2).
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Adaptive Mesh Refinement (AMR) Algorithm

• AMR algorithm

Solve → Estimate → Mark → Refine
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A Posteriori Error Estimation

• computation of the a posteriori error estimation

• indicator η
K

– a computable quantity for each K ∈ T

• estimator η =

( ∑
K∈T

η2
K

)1/2

• theory of the a posteriori error estimation

• reliability bound for error control

|||u− uT ||| ≤ Crη

• efficiency bound for efficiency of AMR algorithms

η
K
≤ Ce|||u− uT |||ωK

∀ K ∈ T
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Construction of Error Estimators

• a difficult task

u =? ⇒


e = u− uT =? impossible

|||e||| =
( ∑
K∈T

|||e|||2K
)1/2

=? doable

• possible avenues

• residual estimator

r = Le = L(u− uT ) = f − LuT

• Zienkiewicz-Zhu (ZZ) estimator

‖ρ
T
−∇uT ‖

• duality estimator

‖α−1/2 (σT + α∇uT ) ‖ with ∇ · σT = f
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Interface Problems

• elliptic interface problems −∇ · (α(x)∇u) = f in Ω ⊂ Rd

u = g on ΓD and n · (α(x)∇u) = h on ΓN

where α(x) is positive piecewise constant w.r.t Ω̄ = ∪ni=1Ω̄i:

α(x) = αi > 0 in Ωi

• smoothness

u ∈ H1+β(Ω)

where β > 0 could be very small.
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A Test Problem with Intersecting Interfaces

• the Kellogg test problem

Ω = (−1, 1)2, ΓD = ∂Ω, f = 0

and α(x) =

 161.448 in (0, 1)2 ∪ (−1, 0)2

1 in Ω \ ([0, 1]2 ∪ [−1, 0]2)

• exact solution

u(r, θ) = r0.1µ(θ) ∈ H1.1−ε(Ω)

with µ(θ) being smooth
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Explicit Residual Estimator

• conforming finite element approximation

find uT ∈ VT ⊂ V = H1
D(Ω) such that

a(uT , v) = f(v) ∀ v ∈ VT

• residual functional

r(v) = f(v)− a(uT , v) = a(u− uT , v) ∀ v ∈ V

= a(u− uT , v − vI) =
∑
K∈T

∫
K

α∇(u− uT ) · ∇(v − vI) dx

=
∑
K∈T

∫
K

(f + div (α∇uT ))(v − vI) dx+
∑
e∈E

∫
e

[[ne · (α∇uT )]]e(v − vI) ds
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Explicit Residual Estimator

• L2 representation of the residual functional

r(v) =
∑
K∈T

∫
K

(f + div (α∇uT ))(v − vI) dx+
∑
e∈E

∫
e

[[ne · (α∇uT )]]e(v − vI) ds

• global reliability bound

|||u− uT ||| ≤ C sup
06=v∈(V,|||·|||)

|r(v)|
|||v|||

≤ C

(∑
K∈T

η2
K

)1/2

• examples of the explicit residual indicator

• Babuska & Rheinboldt 79 (1D), Babuska & Miller 87 (2D)

η2
K = h2

K
‖f + div (α∇uT )‖2

K
+

1

2

∑
e∈∂K

he‖[[ne · (α∇uT )]]‖2e
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interface test problem

exact solution

u(r, θ) = r0.1µ(θ) ∈ H1.1−ε(Ω)
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Explicit Residual Estimator

• global reliability bound

|||u− uT ||| ≤ C sup
06=v∈(V,|||·|||)

|r(v)|
|||v|||

≤ C

(∑
K∈T

η2
K

)1/2

• examples of the explicit residual indicator

• Babuska & Rheinboldt 79 (1D), Babuska & Miller 87 (2D)

η2
K = h2

K
‖f + div (α∇uT )‖2

K
+

1

2

∑
e∈∂K

he‖[[ne · (α∇uT )]]‖2e

• Bernardi & Verfürth 2000, Petzoldt 2002

η2
K = h2

K
‖α− 1

2 (f + div (α∇uT ))‖2
K

+
1

2

∑
e∈∂K

he‖α
− 1

2
e [[ne · (α∇uT )]]‖2e
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meshes generated by BM and BV indicators
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Robust Efficiency and Reliability Bounds

(Bernardi & Verfürth 2000, Petzoldt 2002)

• robust efficiency bound

ηK ≤ C ‖α1/2∇(u− uT )‖0,ωK

where C is independent of the jump of α

• Quasi-Monotonicity Assumption (QMA):

any two different subdomains Ω̄i and Ω̄j, which share at least one

point, have a connected path passing from Ω̄i to Ω̄j through

adjacent subdomains such that the diffusion coefficient α(x) is

monotone along this path.

• robust reliability bound under the QMA, there exists a

constant C independent of the jump of α such that

‖α1/2∇(u− uT )‖0,Ω ≤ C η
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Robust Estimator for Nonconforming Elements

without QMA in both Two and Three Dimensions

(C.-He-Zhang, Math Comp 2017 and SINUM 2017)

for nonconforming linear elements, let e = u− uT and let

ηr,K =
hK√
αK
‖f0‖0,K , ηj,n,F =

√
hF
α

F ,A

‖jn,F ‖0,F ,

and ηj,u,F =

√
α

F ,H

hF
‖[[uh]]‖0,F with jn,F = [[α∇huh · n]]F

• indicator and estimator

η2=
∑
K∈T

η2
K with η2

K = η2
r,K +

1

2

∑
F∈E

(
η2
j,n,F + η2

j,u,F

)
• L2 representation of the error in the energy norm

‖α1/2∇he‖2 =
∑
K∈T

(f,e− eI)K−
∑
F∈EI

∫
F

jn,F {e− eI}wds−
∑
F∈E

∫
F

{α∇e·n}w[[uT ]]ds
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Robust Estimator for Discontinunous Elements

without QMA in both Two and Three Dimensions

(C.-He-Zhang, SINUM 2017)

for discontinuous elements, let e = u− uT and let

ηr,K =
hK√
αK
‖fk−1 +∇ · (α∇uT )‖0,K ,

• indicator and estimator

η2 =
∑
K∈T

η2
K with η2

K = η2
r,K +

1

2

∑
F∈E

(
η2
j,n,F + η2

j,u,F

)
• L2 representation of the error in the energy norm

‖α1/2∇he‖2 =
∑
K∈T

(fk−1 +∇ · (α∇uT ), e− ēK)K −
∑
F∈EI

∫
F

jn,F {e− ēK}wds

−
∑
F∈E

∫
F

{α∇e · n}w[[uT ]]ds−
∑
F∈E

∫
F

γ
α

F ,H

hF
[[uT ]] [[ēK ]]ds

Department of Mathematics, Purdue University Slide 22, March 16, 2017



Zienkiewicz-Zhu (ZZ) Error Estimators

• ZZ estimators

ξ
G

= ‖ρ
T
−∇uT ‖

where ρ
T
∈ UT ⊂ C0(Ω)d is a recovered gradient

• recovery operators

• Zienkiewicz & Zhu estimator (87, cited 2600 times)

ρ
T

(z) =
1

|ωz|

∫
ωz

∇uT dx ∀ z ∈ N

• L2-projection find ρ
T
∈ Uh such that

‖ρ
T
−∇uT ‖ = min

γ ∈UT
‖γ −∇uT ‖

• other recovery techniques

Bank-Xu, Carstensen, Schatz-Wahlbin, Z. Zhang, ...
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Zienkiewicz-Zhu (ZZ) Error Estimators

• recovery-based estimators

ξ
ZZ

= ‖ρ
T
−∇uT ‖

• theory

• saturation assumption: there exists a constant β ∈ [0, 1) s.t.

‖∇u− ρ
T

)‖ ≤ β‖∇u−∇uT ‖ =⇒ 1− β ≤ ξ
ZZ

‖ρ
T
−∇u‖

≤ 1 + β

• efficiency and reliability bounds

Carstensen, Zhou, etc.
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Zienkiewicz-Zhu (ZZ) Error Estimators

• Pro and Con

+ simple

universal

asymptotically exact

− inefficiency for nonsmooth problems

unreliable on coarse meshes

higher-order finite elements, complex systems, etc.
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3443 nodes mesh generated by ηZZ
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Why Does It Fail?

• true gradient and flux for interface problems

∇u /∈ C0(Ω)d

• recovery space

ρ
T
∈ C0(Ω)d

• the reason of the failure

approximating discontinuous functions by continuous functions
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How to Fix It?

(C.-Zhang, SINUM (09, 10, 11), C.-He-Zhang, CMAME 17)

• true gradient and flux

u ∈ H1(Ω) =⇒ ∇u ∈ H(curl,Ω)

σ = −α∇u ∈ H(div,Ω)

• conforming elements

uT ∈ H1(Ω) =⇒ ∇uT ∈ H(curl,Ω)

σ̃T = −α∇uT /∈ H(div,Ω)

 =⇒ σ̂T ∈ RT0 or BDM1

• mixed elements gradient ∇u = −α−1σ ∈ H(div,Ω)

uT ∈ L2(Ω),σT ∈ H(div,Ω)

ρ̃
T

= −α−1σT /∈ H(curl,Ω)

 =⇒ ρ̂
T
∈ D1 or N1
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3557 nodes mesh generated by ξRT with α = 0.1
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Summary of Improved ZZ Error Estimators

• Pro and Con

+ simple

universal

asymptotically exact

− inefficiency for nonsmooth problems

unreliable on coarse meshes

higher-order finite elements, complex systems, etc.
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Estimators through Duality

• early work

• Hlaváček, Haslinger, Nećas, and Lovǐsek,

Solution of Vatiational Inequality in Mechanics,

Springer-Verlag, New York, 1989. (Translation of 1982 book.)

• Ladevéze-Leguillon (83),

Demkowicz and Swierczek (85),

Oden, Demkowicz, Rachowicz, and Westermann (89)

• recent work

• Vejchodsky (04)

• Braess-Schöberl (08), ...

• Cai-Zhang (12), with Cao, Falgout, He, Starke, ...
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Estimators through Duality

(Equilibrated Residual Error Estimator)

(Ladevéze-Leguillon 83, Vejchodsky 04, Braess-Schöberl 08)

• Prager-Synge identity for u, uT ∈ H1
D(Ω)

‖A1/2∇ (uT − u)‖2 + ‖A1/2(∇u+A−1τ )‖2 = ‖A1/2(∇uT +A−1τ )‖2

for all τ ∈ ΣN (f) ≡ {τ ∈ HN (div; Ω)
∣∣∇ · τ = f}

(∇ (uT − u), A∇u+ τ )) = − (uT − u, ∇ · (A∇u) +∇ · τ )) = 0

• guaranteed reliable estimator σ̃T = −A−1∇uT

‖A1/2∇ (u− uT )‖ ≤ η (τ ) ≡ ‖A−1/2(τ − σ̃T )‖ ∀ τ ∈ ΣN (f)

Department of Mathematics, Purdue University Slide 32, March 16, 2017



Equilibrated Residual Error Estimator

• explicit/local calculation of numerical flux Assume that f is

piecewise polynomial of degree p− 1 w.r.t. T

• explicit calculation of numerical flux for linear element

(Braess-Schöberl 08)

σ̂
BS
∈ ΣN (f) ∩RT 0

• solving a vertex patch mixed problem for p-th order element

(Braess-Pillwein-Schöberl 09)

σ̂
BPS
∈ ΣN (f) ∩RT p−1

• p-robust efficiency

η
K

(σ̂
BPS

) ≤ Ce ‖A1/2∇(u− uT )‖ωK

where Ce > 0 is a constant independent of p
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• Non-robustness on constant-free estimator

for singular-perturbed reaction- or convection-diffusion problems

(Verfürth 09, SINUM)

for interface problems (C.-Zhang, SINUM 2012)

Figure 1: mesh generated by η
BS
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Figure 2: error and estimator η
BS
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Robust Equilibrated Residual Error Estimator

• Prager-Synge identity for all τ ∈ ΣN (f)

‖A1/2∇ (u− uT )‖2 + ‖A1/2(∇u+A−1τ )‖2 = ‖A−1/2(τ − σ̃h)‖2

• guaranteed reliable estimator

‖A1/2∇(u− uT )‖ ≤ η(τ ) ≡ ‖A−1/2(τ − σ̃T )‖ ∀ τ ∈ ΣN (f)

≤ inf
τ ∈ΣN (f)

‖A−1/2(τ − σ̃T )‖

• discrete equilibrated flux

‖A−1/2(σ̂T − σ̃T )‖ = min
τ ∈ΣN (f)∩RTp−1

‖A−1/2(τ − σ̃T )‖

For improved ZZ flux, the minimization is over RT 0 or BDM1
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Equilibrated Residual Error Estimator

(C.-Zhang, SINUM 2012)

• explicit/local calculation of numerical flux Assume that f is

piecewise polynomial of degree p− 1 w.r.t. T

• explicit calculation of numerical flux for linear element

σ̂
CZ
∈ ΣN (f) ∩RT 0

• solving a vertex patch problem for p-th order element

σ̂
CZ
∈ ΣN (f) ∩RT p−1

• α and p-robust efficiency

η
K

(σ̂
CZ

) ≤ Ce ‖A1/2∇(u− uT )‖ωK

where Ce > 0 is a constant independent of α and p
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Equilibrated Residual Error Estimator

Figure 3: mesh generated by η
CZ
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Figure 4: error and estimator

η
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Estimators through Duality

• minimization problem:

J(u) = min
v∈H1

D(Ω)
J(v)

where J(v) =
1

2
(A∇v, ∇v)− f(v) is the energy functional

• dual problem:

J∗(σ) = max
τ∈ΣN (f)

J∗(τ )

where J∗(τ ) = −1

2
(A−1τ , τ ) is the complimentary functional and

ΣN (f) ≡ {τ ∈ HN (div; Ω)
∣∣∇ · τ = f}

• duality theory: (Ekeland-Temam 76)

J(u) = J∗(σ) and σ = −A∇u
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Summery on Estimators through Duality

• guaranteed reliability bound

‖A1/2∇(u− uT )‖ ≤ η(σ
CZ

)

where η(σ
CZ

) = (J(uT )− J∗(σ
CZ

))
1/2

• robust local efficiency bound for A = α I

ηK(σ
CZ

) ≤ Ce ‖α1/2∇(u− uT )‖0,ωK
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Equilibrated Error Estimator for Discontinuous Elements

(C.-He-Starke-Zhang)

• continuous elements let uc
T
∈ H1

D(Ω) be an approximation

‖A1/2∇(u− uc
T

)‖ ≤ inf
τ ∈ΣN (f)

‖A−1/2(τ − σ̃h)‖

where σ̃T = −A∇uc
T

is the numerical flux

• discontinuous elements let uT ∈ H1
D(T ) be an approximation

‖A1/2∇h(u− uT )‖2

≤ inf
τ∈ΣN (f)

‖A−1/2(τ − σ̃T )‖2 + inf
v∈H1

D(Ω)
‖A1/2(∇v − ρ̃

T
)‖2

= inf
τ∈ΣN (f)

‖A−1/2(τ − σ̃T )‖2 + inf
γ∈H̊D(curl,Ω)

‖A1/2(γ − ρ̃
T

)‖

where σ̃T = −A∇uT and ρ̃
T

= ∇uT are the numerical flux and

gradient, respectively.
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Equilibrated Error Estimator for Non-conforming Elements

of Odd Order

• discontinuous elements let e = u− unc
T

‖A1/2∇he‖2 ≤ inf
τ∈ΣN (f)

‖A−1/2(τ − σ̃T )‖2 + inf
v∈H1

D(Ω)
‖A1/2(∇v − ρ̃

T
)‖2

= inf
τ∈ΣN (f)

‖A−1/2(τ − σ̃T )‖2 + inf
γ∈H̊D(curl,Ω)

‖A1/2(γ − ρ̃
T

)‖

• explicit calculation of an equilibrated flux for odd order

σ̂T ∈ ΣN (f) ∩RT p−1

• explicit calculation of a gradient

ρ̂
T
∈ HD(curl,Ω) ∩NEp−1
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Equilibrated Error Estimator for Non-conforming Elements

of Odd Order

• discontinuous elements let e = u− unc
T

‖A1/2∇he‖2 ≤ inf
τ∈ΣN (f)

‖A−1/2(τ − σ̃T )‖2 + inf
v∈H1

D(Ω)
‖A1/2(∇v − ρ̃

T
)‖2

= inf
τ∈ΣN (f)

‖A−1/2(τ − σ̃T )‖2 + inf
γ∈H̊D(curl,Ω)

‖A1/2(γ − ρ̃
T

)‖

• indicator and estimator

η2 =
∑
K∈T

η2
K with η2

K = η2
σ,K + η2

ρ,K

where ησ,K and ηρ,K are given by

ησ,K = ‖A−1/2(σ̂T − σ̃T )‖0,K and ηρ,K = ‖A1/2(ρ̂
T
− ρ̃

T
)‖0,K
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Equilibrated Error Estimator for Non-conforming Elements

of Odd Order

• indicator and estimator

η2 =
∑
K∈T

η2
K with η2

K = η2
σ,K + η2

ρ,K

where ησ,K and ηρ,K are given by

ησ,K = ‖A−1/2(σ̂T − σ̃T )‖0,K and ηρ,K = ‖A1/2(ρ̂
T
− ρ̃

T
)‖0,K

• α-robust efficiency without QMA

η
K
≤ Ce

(
‖A1/2∇(u− uc

T
)‖ωK

+ osc(f, ωK)
)

where Ce > 0 is a constant independent of α

• α-robust reliability without QMA

‖A1/2∇(u− unc
T

)‖ ≤ Cr (η + osc(f, T ))

where Cr > 0 is a constant independent of α
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Kellogg’s Problem for Crouzeix-Raviart Element

conforming error ησ = 0

Figure 5: mesh generated by ηK
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Figure 6: error and estimator η
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Poisson’s Equation on L-Shape Domain for Crouzeix-Raviart

Element

Figure 7: mesh generated by ηK
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Figure 8: error and estimator η
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Summary

• estimators

• explicit residual: reasonable mesh, not efficient error control

• improved ZZ: ignoring equilibrium equation

• dual: the method of choice

• adaptive control of meshing (AMR)

• some “nice” problems: many viable estimators

• challenging problems (layers, oscillations, etc) : a few

• error control

• asymptotic meshes: some smooth problems

• non-asymptotic meshes: ???

• challenging problems : ???
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Grand Computational Challenges

• complex systems

multi-scales, multi-physics, etc.

• computational difficulties

• oscillations

• interior/boundary layers

• interface singularities

• nonlinearity

• ???

• a general and viable approach

adaptive method + accurate, robust error estimation
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Adaptive Control of Numerical Algorithms

“If error is corrected whenever it is recognized as
such, the path to error is the path of truth”

by Hans Reichenbach, the renowned philosopher of science, in his

1951 treatise, The Rise of Scientific Philosophy

Department of Mathematics, Purdue University Slide 49, March 16, 2017




