HW1

Problem 1 (S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element
Methods, p. 1-2). Give weak formulations of the two-point boundary value problem

a) —u”" 4+u=fin (0,1)

If u is the solution and v is any (sufficiently regular) function such that v(0) = v(1) = 0,
then integration by parts yields

)= [ s s
:/o —u"(x)v(z) + u(x)v(z) de
= /0 u(z)v(z) + o' (2)v'(z) dz =: a(u,v).

Let us define
V ={ve L*0,1): a(v,v) < oo and v(0) = v(1) = 0}.

Then we can say that the solution w is characterized by
u € V such that a(u,v) = (f,v) Yv eV,

which is called the variational or weak formulation of the problem.



Problem 2 (Student submission). Explain what is wrong in both the variational setting
(VP) and the classical setting (BVP) for the problem

—u" = f with «/(0) = /(1) = 0.
That is, explain in both contexts why this problem is not well-posed.
a) There exists at least one solution.
b) There exists at most one solution.

¢) The solution depends continuously on the data.
1. (BVP): If u is a solution, u + ¢ for some constant c is also a solution since
—(u+¢)'=—u" = fand (u+¢)'(0) =4 (0) =0="1/(1) = (u+¢)'(1).
Hence, b) does not hold.

2. If u is a solution and v is any (sufficiently regular) function, then integration by parts
yields

)= [ f@teds
= /01 —u" (z)v(z) dx
_ /O @ () d = aluv).

Let us define
V ={ve L*0,1):alv,v) < oo}

Then we have the variational formulation of the problem
u € V such that a(u,v) = (f,v) YveV.

If u is a solution, then u + ¢ is also a solution since

/01<u + ) (x)v'(z) do = /01 u' (2)v' (z) de = /01 flx)v(x) de.

Hence, b) does not hold.



Problem 3. Prove that
—u" = fin (0,1) with u(0) =u/(1) =0

has a solution u € C?([0, 1]) provided f € C°([0,1]). (Hint: write

u(x):/: (/Slf(t)dt) ds

and verify the equations.)
Since f € C°([0,1]), we have

o= | fydt € ¢ ((0.1).

u(z) = /0 (/Slf(t) dt) ds € C([0,1)).

Hence, u(z) € C?([0,1]). Moreover,

Similarly,

) u(O):/()O(/:f(t)dt) ds =0
’ (1) = /11f(t) dt =0
3.

) =iy
- (/:f(t)dt>
= —(—f(@) = f(2)



Problem 4 (Royden, Halsey Lawrence and Fitzpatrick, Patrick). Suppose that €2 is bounded
and that 1 < p < ¢ < co. Prove that L1(Q2) C LP(Q). (Hint: use Holder’s inequality.) Give
examples to show that the inclusion is strict if p < ¢ and false if 2 is not bounded.

1. Assume g < co. Define r = ¢/p > 1 and let s be the conjugate of r (1 = 1/r 4+ 1/s).
Let f belong to LI(2). Observe that f? belongs to L"(2) and g = xq (9(z) = 1 in
2 and 0 otherwise) belongs to L*(€2) since m(2) < oo (area of §2). Apply Holder’s
inequality . Then

1/s
/Q = / P9 < 1 ey [ / |g|ﬂ 1 (]

Take the 1/p power of each side.

2. Assume g = oo and let f belong to L>°(2). Then
L < 1 = 151m(@) < o
Q Q

3. In general, for  of finite measure and 1 < p < ¢ < 0o, LI(2) is a proper subspace of
LP(Q2). For instance, let 2 = (0, 1] and f be defined by f(z) = 2® for 0 < x < 1, where
—1/p<a < —1/q. Then f € LP(Q2) \ LY(Q).

4. For = (0,00) and f defined by

2-1/2

Jx) = 1+ |lnz|

for x > 0,

f belongs to LP(?) if and only if p = 2.



Problem 5. Suppose that €2 is bounded and that f; — f in LP(€2). Using Holder’s inequality
prove that

/ij(x)dx%/gf(x)dx as j — oo.

By the linearity and triangle inequality of integration,

/Q (@) dz — / f(@) da

/Q f(2) — f(z) da
< / 1£(0) — ()| du
- / (fy(@) — f(2))xal de

<1y = oy [m( 2] = 0

where 1 =1/p+1/q.



