
HW1

Problem 1 (S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element
Methods, p. 1-2). Give weak formulations of the two-point boundary value problem

a) −u′′ + u = f in (0, 1)

b) u(0) = u(1) = 0.

If u is the solution and v is any (sufficiently regular) function such that v(0) = v(1) = 0,
then integration by parts yields

(f, v) :=

∫ 1

0

f(x)v(x) dx

=

∫ 1

0

−u′′(x)v(x) + u(x)v(x) dx

=

∫ 1

0

u(x)v(x) + u′(x)v′(x) dx =: a(u, v).

Let us define
V = {v ∈ L2(0, 1) : a(v, v) < ∞ and v(0) = v(1) = 0}.

Then we can say that the solution u is characterized by

u ∈ V such that a(u, v) = (f, v) ∀v ∈ V,

which is called the variational or weak formulation of the problem.



Problem 2 (Student submission). Explain what is wrong in both the variational setting
(VP) and the classical setting (BVP) for the problem

−u′′ = f with u′(0) = u′(1) = 0.

That is, explain in both contexts why this problem is not well-posed.

a) There exists at least one solution.

b) There exists at most one solution.

c) The solution depends continuously on the data.

1. (BVP): If u is a solution, u+ c for some constant c is also a solution since

−(u+ c)′′ = −u′′ = f and (u+ c)′(0) = u′(0) = 0 = u′(1) = (u+ c)′(1).

Hence, b) does not hold.

2. If u is a solution and v is any (sufficiently regular) function, then integration by parts
yields

(f, v) :=

∫ 1

0

f(x)v(x) dx

=

∫ 1

0

−u′′(x)v(x) dx

=

∫ 1

0

u′(x)v′(x) dx =: a(u, v).

Let us define
V = {v ∈ L2(0, 1) : a(v, v) < ∞}.

Then we have the variational formulation of the problem

u ∈ V such that a(u, v) = (f, v) ∀v ∈ V.

If u is a solution, then u+ c is also a solution since∫ 1

0

(u+ c)′(x)v′(x) dx =

∫ 1

0

u′(x)v′(x) dx =

∫ 1

0

f(x)v(x) dx.

Hence, b) does not hold.



Problem 3. Prove that

−u′′ = f in (0, 1) with u(0) = u′(1) = 0

has a solution u ∈ C2([0, 1]) provided f ∈ C0([0, 1]). (Hint: write

u(x) =

∫ x

0

(∫ 1

s

f(t) dt

)
ds

and verify the equations.)
Since f ∈ C0([0, 1]), we have

g(s) =

∫ 1

s

f(t) dt ∈ C1([0, 1]).

Similarly,

u(x) =

∫ x

0

(∫ 1

s

f(t) dt

)
ds ∈ C1([0, 1]).

Hence, u(x) ∈ C2([0, 1]). Moreover,

1.

u(0) =

∫ 0

0

(∫ 1

s

f(t) dt

)
ds = 0

2.

u′(1) =

∫ 1

1

f(t) dt = 0

3.

−u′′(x) = −(u′(x))′

= −
(∫ 1

x

f(t) dt

)′

= −(−f(x)) = f(x)



Problem 4 (Royden, Halsey Lawrence and Fitzpatrick, Patrick). Suppose that Ω is bounded
and that 1 ≤ p < q ≤ ∞. Prove that Lq(Ω) ⊂ Lp(Ω). (Hint: use Hölder’s inequality.) Give
examples to show that the inclusion is strict if p < q and false if Ω is not bounded.

1. Assume q < ∞. Define r = q/p > 1 and let s be the conjugate of r (1 = 1/r + 1/s).
Let f belong to Lq(Ω). Observe that fp belongs to Lr(Ω) and g = χΩ (g(x) = 1 in
Ω and 0 otherwise) belongs to Ls(Ω) since m(Ω) < ∞ (area of Ω). Apply Hölder’s
inequality . Then∫

Ω

|f |p =
∫
Ω

|f |p · g ≤ ∥f∥pLq(Ω) ·
[∫

Ω

|g|s
]1/s

= ∥f∥pLq(Ω)[m(Ω)]1/s.

Take the 1/p power of each side.

2. Assume q = ∞ and let f belong to L∞(Ω). Then∫
Ω

|f |p ≤
∫
Ω

∥f∥p∞ = ∥f∥p∞m(Ω) < ∞.

3. In general, for Ω of finite measure and 1 ≤ p < q ≤ ∞, Lq(Ω) is a proper subspace of
Lp(Ω). For instance, let Ω = (0, 1] and f be defined by f(x) = xα for 0 < x ≤ 1, where
−1/p < α ≤ −1/q. Then f ∈ Lp(Ω) \ Lq(Ω).

4. For Ω = (0,∞) and f defined by

f(x) =
x−1/2

1 + |lnx|
for x > 0,

f belongs to Lp(Ω) if and only if p = 2.



Problem 5. Suppose that Ω is bounded and that fj → f in Lp(Ω). Using Hölder’s inequality
prove that ∫

Ω

fj(x) dx →
∫
Ω

f(x) dx as j → ∞.

By the linearity and triangle inequality of integration,∣∣∣∣∫
Ω

fj(x) dx−
∫
Ω

f(x) dx

∣∣∣∣ = ∣∣∣∣∫
Ω

fj(x)− f(x) dx

∣∣∣∣
≤

∫
Ω

|fj(x)− f(x)| dx

=

∫
Ω

|(fj(x)− f(x))χΩ| dx

≤ ∥fj − f∥Lp(Ω)[m(Ω)]1/q → 0

where 1 = 1/p+ 1/q.


