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Abstract. This paper develops and analyzes two least-squares methods for the numerical so-
lution of linear, stationary incompressible Newtonian fluid flow in two and three dimensions. Both
approaches use the L2 norm to define least-squares functionals. One is based on the stress-velocity
formulation (see section 3.2), and it applies to general boundary conditions. The other is based on
an equivalent formulation for the pseudostress and velocity (see section 4.2), and it applies to pure
velocity Dirichlet boundary conditions. The velocity gradient and vorticity can be obtained alge-
braically from this new tensor variable. It is shown that the homogeneous least-squares functionals
are elliptic and continuous in the H(div; Ω)d × H1(Ω)d norm. This immediately implies optimal
error estimates for conforming finite element approximations. As well, it admits optimal multigrid
solution methods if Raviart–Thomas finite element spaces are used to approximate the stress or the
pseudostress tensor.
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1. Introduction. For incompressible Newtonian fluid flow with homogeneous
density, the primitive physical equations are the conservation of momentum and the
constitutive law. The constitutive law relates the stress tensor to the deformation rate
tensor and pressure, and it states the incompressibility condition. It is a first-order
partial differential system for the physical variables stress, velocity, and pressure.
By differentiating and eliminating the stress, one obtains the well-known second-
order incompressible Navier–Stokes equations in the velocity-pressure formulation. A
tremendous amount of computational research has been done on this second-order
partial differential system (see, e.g, mathematical books [17, 18]), but these equations
may still be one of the most challenging problems in computational fluid mechanics
and computational mathematics.

In recent years there has been substantial interest in the use of least-squares prin-
ciples for the numerical approximation of Newtonian fluid flow problems (see, e.g.,
the survey paper [5], the monograph [21], and references therein). In particular, there
are many research articles in both the mathematics and engineering communities
on least-squares methods for the stationary Stokes equations (see [5]). Specifically,
least-squares methods based on five first-order partial differential systems have been
proposed, analyzed, implemented, and tested. These five first-order systems are for-
mulations for variables (i) velocity, vorticity, and pressure [5, 21], (ii) velocity, pres-
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sure, and “stress” [4], (iii) velocity, velocity gradient, and pressure [11], (iv) velocity,
velocity gradient, and pressure with additional constraints [11], and (v) constrained
velocity gradient and pressure [15]. The new “stress” variable in (ii) is actually the
deformation rate tensor and not the physical stress. Least-squares methods based on
the first three formulations employ either discrete inverse norms (see [10, 7]) or mesh-
weighted L2 norms (see [3]) in order to achieve optimal finite element approximations.
The inverse norm approach is very expensive due to its discrete inverse norm evalu-
ations, and fast multigrid solvers are still a missing ingredient for the mesh-weighted
L2 norm approaches. If the original problem is sufficiently smooth, methods based
on the last two formulations are equivalent to the H1 norm. Such equivalence implies
optimal finite element approximations and optimal convergence of multigrid solvers.
But the smoothness requirement is restrictive.

A common feature of all these formulations is that they do not involve the prim-
itive physical equations. Based on the velocity-pressure formulation of the Stokes
equations, they are derived by introducing new variables such as vorticity in (i),
“stress” in (ii), velocity gradient in (iii) and (iv), and constrained velocity gradient in
(v). Some of these new variables have physical meanings, but they are not original
physical quantities of interest.

The first objective of this paper is to develop a new least-squares method that
does not have the above mentioned drawbacks and that computes the original phys-
ical quantities directly. For linear, stationary problems of incompressible Newtonian
fluid flow, our least-squares method is based directly on the primitive first-order par-
tial differential system: the stress-velocity-pressure formulation, without introducing
any new variables nor any new equations. We define the least-squares functional by
applying a L2 norm least-squares principle to this first-order system. It is shown that
the homogeneous least-squares functional is elliptic and continuous in the H(div; Ω)d

norm for the stress, the H1(Ω)d norm for the velocity, and the L2 norm for the pres-
sure. This immediately implies optimal error estimates for conforming finite element
approximations in H(div; Ω)d × H1(Ω)d × L2(Ω). It also admits optimal multigrid
solution methods if Raviart–Thomas finite element spaces are used to approximate
the stress tensor. Both discretization accuracy and multigrid convergence rates are
uniform in the viscosity parameter.

Since the pressure can be represented in terms of the normal stress and since
the stress is an independent variable in the first-order system, the pressure can be
eliminated from the first-order system. By replacing the pressure with the normal
stress, we derive the stress-velocity formulation for incompressible Newtonian fluid
flow. We can then define the corresponding least-squares method and show identi-
cal numerical properties to those of the stress-velocity-pressure formulation, since the
stress-velocity formulation is a special case of the stress-velocity-pressure formulation.
It is important to note that, mathematically, the stress-velocity formulation for lin-
ear, stationary problems of incompressible Newtonian fluid flow is the limiting case of
the stress-displacement formulation for elastic problems when 2µ = ν. This indicates
that this paper, together with [14], develops a unified least-squares approach for both
elastic solids and incompressible Newtonian fluids with respect to spatial discretiza-
tion and fast solution solvers, even though the variables and materials have different
physical meanings. Hence, our method can be extended to problems coupling elastic
deformation with fluid flow.

Many applications in incompressible Newtonian fluid flow do not have traction
boundary conditions. It is then not necessary to use the stress as an independent
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variable. This is especially true because the stress does not contain any informa-
tion on the vorticity that is a physical quantity of great interest in fluid mechanics.
Thus, for pure velocity Dirichlet boundary conditions, we define a new independent
variable, pseudostress, in terms of the velocity gradient and pressure, and then de-
rive an equivalent first-order system containing the pseudostress and velocity. The
pressure, the velocity gradient, and, hence, the vorticity are expressed in terms of
the pseudostress. The L2 norm least-squares functional based on this first-order sys-
tem is again shown to be elliptic and continuous in the H(div; Ω)d ×H1(Ω)d norm.
Hence, Raviart–Thomas finite elements for the pseudostress and standard continuous
piecewise polynomials for the velocity yield optimal approximation, and the resulting
algebraic equations can be solved with optimal multigrid methods.

For completeness, we also study inverse norm least-squares functionals and show
that their homogeneous forms are elliptic and continuous in appropriate Hilbert
spaces. These functionals can be used to develop discrete inverse norm least-squares
methods (see, e.g., [6]). Also, for many applications, it is convenient to impose bound-
ary conditions weakly through boundary functionals. Such functionals are also studied
in this paper (see section 4.5). (See [23] for the computational feasibility of methods
based on these types of functionals.)

Least-squares methods developed in this paper for linear, stationary problems can
be easily extended to nonlinear incompressible Newtonian flows, at least in principle.
One can simply include an appropriate form of the nonlinear convection term in the
residual of the momentum equations. Possible choices for this form can (1) involve
only the velocity or (2) involve the (pseudo-) stress which replaces the velocity gradi-
ent. Mathematical analysis for least-squares methods applied to nonlinear problems
is much more difficult, but it still can be established using the abstract theory of [9].
Formulations of our methods can be easily extended to incompressible non-Newtonian
flows as well: only a simple modification is needed in the constitutive equation.

An outline of the paper is as follows. In section 2, the stress-velocity-pressure
formulation for incompressible Newtonian fluid flow problems and the corresponding
linear, stationary problems are introduced, as well as some notation and the Stokes
equations. In section 3, least-squares functionals based on the stress-velocity-pressure
and stress-velocity formulations are developed, their ellipticity and continuity are
established, and finite element approximations and multigrid solvers are discussed. In
section 4, least-squares methods for pure Dirichlet boundary conditions are developed.

1.1. Notation. We use the standard notation and definitions for the Sobolev
spaces Hs(Ω)d and Hs(∂Ω)d for s ≥ 0. The standard associated inner products are
denoted by (·, ·)s,Ω and (·, ·)s,∂Ω, and their respective norms are denoted by ‖ · ‖s,Ω
and ‖ · ‖s,∂Ω. (We suppress the superscript d because the dependence on dimension
will be clear by context. We also omit the subscript Ω from the inner product and
norm designation when there is no risk of confusion.) For s = 0, Hs(Ω)d coincides
with L2(Ω)d. In this case, the inner product and norm will be denoted by ‖ · ‖ and
(·, ·), respectively. Set H1

D(Ω) := {q ∈ H1(Ω) : q = 0 on ΓD}. We denote the duals

of H1
D(Ω) and H

1
2 (∂Ω) by H−1

D (Ω) and H− 1
2 (∂Ω) with norms defined by

‖φ‖−1, D = sup
0 �=ψ∈H1

D
(Ω)

(φ, ψ)

‖ψ‖1
and ‖φ‖−1/2, ∂Ω = sup

0 �=ψ∈H
1
2 (∂Ω)

(φ, ψ)

‖ψ‖1/2,∂Ω
.

When D = ∂Ω, we denote the dual of H1
0 (Ω) = H1

D(Ω) and its norm by H−1
0 (Ω)

and ‖ · ‖−1, 0, respectively. When D is empty, the dual of H1(Ω) and its norm are
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denoted by the respective H−1(Ω) and ‖ · ‖−1. Also, we denote the product space∏d
i=1 H

−1
D (Ω) with the standard product norm by H−1

D (Ω)d. Finally, set

H(div; Ω) = {v ∈ L2(Ω)2 : ∇ · v ∈ L2(Ω)},

which is a Hilbert space under the norm

‖v‖H(div; Ω) =
(
‖v‖2 + ‖∇ · v‖2

) 1
2 ,

and define the subspace

HN (div; Ω) = {v ∈ H(div; Ω) : n · v = 0}.

2. Mathematical equations for incompressible Newtonian fluid flow.
Let Ω be a bounded, open, connected subset of �d (d = 2 or 3) with a Lipschitz
continuous boundary ∂Ω. Denote the outward unit vector normal to the boundary
by n = (n1, . . . , nd)

t. We partition the boundary of Ω into two open subsets ΓD and
ΓN such that ∂Ω = Γ̄D ∪ Γ̄N and ΓD ∩ ΓN = ∅. For simplicity, we will assume that
ΓD is not empty (i.e., mes (ΓD) 	= 0).

For a second-order tensor τ = (τij)d×d, define its divergence and normal by

∇ · τ =

⎛
⎜⎝

∂τ11/∂x1 + · · · + ∂τ1d/∂xd

...
∂τd1/∂x1 + · · · + ∂τdd/∂xd

⎞
⎟⎠ and n · τ =

⎛
⎜⎝

n1τ11 + · · · + ndτ1d
...

n1τd1 + · · · + ndτdd

⎞
⎟⎠ ,

respectively. That is, the divergence and normal operators apply to each row of the
tensor. Also denote the matrix trace operator by tr:

tr τ = τ11 + · · · + τdd.

Let f = (f1, . . . , fd)
t be a given external body force defined in Ω and g =

(g1, . . . , gd)
t be a given external surface traction applied on ΓN . Let u(x, t) =

(u1, . . . , ud)
t be the velocity vector field of a particle of fluid that is moving through

x at time t, and let σ = (σij)d×d be the stress tensor field. Without loss of generality,
we assume that the homogeneous density is one. Then conservation of momentum
implies both symmetry of the stress tensor and the local relation{

Du
Dt −∇ · σ = f in Ω,

n · σ = g on ΓN ,
(2.1)

where D
Dt is the material derivative

D

Dt
=

∂

∂t
+ u · ∇ =

∂

∂t
+

d∑
i=1

ui
∂

∂xi
.

In this paper, we restrict ourselves to linear, stationary problems, i.e., problems where
the momentum equation in (2.1) is of the form

−∇ · σ = f .(2.2)

Let ν be the viscosity parameter, p the pressure, and

ε(u) =
1

2

(
∇u + (∇u)t

)
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the deformation rate tensor, where ∇u is the velocity gradient tensor with entries
(∇u)ij = ∂ui/∂xj . Then the constitutive law for incompressible Newtonian fluids is

{
σ = ν ε(u) − p I in Ω,

∇ · u = 0 in Ω.
(2.3)

The second equation in (2.3) is the incompressibility condition. Without loss of gener-
ality, we assume that ν = 1, since otherwise u can be rescaled to ν u. Now, combining
(2.2) and (2.3), we have the stress-velocity-pressure formulation for incompressible
Newtonian fluid flow: ⎧⎪⎪⎨

⎪⎪⎩
−∇ · σ = f in Ω,

σ + p I − ε(u) = 0 in Ω,

∇ · u = 0 in Ω.

(2.4)

Differentiating and eliminating the stress in the above system leads to the well-known
incompressible Stokes equations:{

−∇ · ε(u) + ∇ p = f in Ω,

∇ · u = 0 in Ω.
(2.5)

3. General boundary conditions. For simplicity, we assume that the bound-
ary conditions are homogeneous:

u = 0 on ΓD and n · σ = 0 on ΓN .(3.1)

When ΓN is nonempty, because of the traction boundary condition, it is natural
and necessary to have the stress be the independent variable. Hence, we study least-
squares functionals based on formulations for stress-velocity-pressure (section 3.1) and
for stress-velocity (section 3.2). Our primary goal in this section is to establish conti-
nuity and ellipticity for these least-squares functionals in appropriate Hilbert spaces.
The least-squares finite element method based on the stress-velocity formulation is
described in section 3.3.

3.1. Least-squares functionals based on the stress-velocity-pressure for-
mulation. The first-order system (2.4), together with boundary conditions (3.1), is
the stress-velocity-pressure formulation for linear, stationary incompressible Newto-
nian flow. Taking the trace of the second equation in (2.4) and using the fact that

tr ε(u) = ∇ · u = 0,

we have the following important relation between the pressure and normal stress:

trσ + d p = 0.(3.2)

Before defining least-squares functionals, let us first describe solution spaces. When
ΓD = ∂Ω, Stokes system (2.5) and (3.1) have a unique solution, provided that∫

Ω

p dx = 0.(3.3)
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Together with (3.2), this implies ∫
Ω

trσ dx = 0.

Therefore, we are at liberty to impose these conditions on the stress and pressure.
Thus, define the spaces

XN =

⎧⎪⎨
⎪⎩

HN (div; Ω)d if ΓN 	= ∅,

X0 ≡
{

τ ∈ H(div; Ω)d |
∫

Ω

tr τ dx = 0

}
otherwise

and

L2
N (Ω) =

⎧⎪⎨
⎪⎩

L2(Ω) if ΓN 	= ∅,

L2
0(Ω) =

{
q ∈ L2(Ω) |

∫
Ω

q dx = 0

}
otherwise.

Then for f ∈ L2(Ω)d we define the following least-squares functionals:

G−1(σ, u, p ; f) = ‖∇ · σ + f‖2
−1,D + ‖σ + p I − ε(u)‖2 + ‖∇ · u‖2(3.4)

and

G(σ, u, p ; f) = ‖∇ · σ + f‖2 + ‖σ + p I − ε(u)‖2 + ‖∇ · u‖2(3.5)

for (σ, u, p) ∈ V ≡ XN ×H1
D(Ω)d×L2

N (Ω). We will first establish uniform bounded-
ness and ellipticity (i.e., equivalence) of the homogeneous functionals G−1(τ , v, q ; 0)
and G(τ , v, q ; 0) in terms of the respective functionals M−1(τ , v, q) and M(τ , v, q)
defined on V by

M−1(τ , v, q) = ‖v‖2
1 + ‖q‖2 + ‖τ‖2

and

M(τ , v, q) = ‖v‖2
1 + ‖q‖2 + ‖τ‖2 + ‖∇ · τ‖2.

To accomplish this, let Aλ : Rd×d −→ Rd×d be a linear map defined by

Aλ τ = τ − λ

dλ + 2µ
(tr τ ) I ∀ τ ∈ Rd×d.

The Aλ is the compliance tensor of fourth order, a terminology from elasticity. Pa-
rameters λ and µ are material constants for both solids and fluids. We will use the
following fundamental inequality for the trace of XN :

‖tr τ‖ ≤ C
(√

(Aλ τ , τ ) + ‖∇ · τ‖−1,D

)
∀ τ ∈ XN ,(3.6)

where C is a positive constant independent of λ. This inequality was proved in [1]
for two dimensions and Dirichlet boundary conditions (i.e., d = 2 and ΓN = ∅) and
in [13] for both two and three dimensions and general boundary conditions. When λ
approaches ∞, the limit of the linear map Aλ is

A∞ τ = τ − 1

d
(tr τ ) I : Rd×d −→ Rd×d.



LEAST SQUARES FOR INCOMPRESSIBLE NEWTONIAN FLOW 849

Note that A∞ is not an invertible map. A simple calculation gives⎧⎨
⎩

(A∞ τ , τ ) = ‖τ‖2 − 1
d ‖tr τ‖2 = ‖A∞ τ‖2,

(Aλ τ , τ ) = ‖τ‖2 − λ
dλ+2µ‖tr τ‖2 = ‖A∞ τ‖2 + 2µ

d(dλ+2µ)‖tr τ‖2.
(3.7)

Since the constant in (3.6) is independent of λ, taking the limit of (3.6) as λ → ∞
and using the first equation in (3.7) we obtain

‖tr τ‖ ≤ C (‖A∞ τ‖ + ‖∇ · τ‖−1,D) ∀ τ ∈ XN .(3.8)

Let ‖τ‖a ≡
(
‖A∞ τ‖2 + ‖∇ · τ‖2

−1, D

) 1
2 ; then ‖τ‖a is equivalent to the L2 norm.

Lemma 3.1. There exists a positive constant C such that

1

C
‖τ‖2 ≤ ‖τ‖2

a ≤ C ‖τ‖2 ∀ τ ∈ XN .(3.9)

Proof. From the definition of the inverse norm and the Cauchy–Schwarz inequal-
ity, we have that

‖∇ · τ‖−1, D ≤ ‖τ‖.(3.10)

Equation (3.9) follows easily from (3.7), (3.8), and (3.10).
Now we are ready to establish equivalence between functionals G−1 and M−1 and

equivalence between functionals G and M .
Theorem 3.2. The homogeneous functionals G−1(τ , v, q ; 0) and G(τ , v, q ; 0)

are uniformly equivalent to the functionals M−1(τ , v, q) and M(τ , v, q), respectively;
i.e., there exist positive constants C1 and C2 such that

1

C1
M−1(τ , v, q) ≤ G−1(τ , v, q ; 0) ≤ C1M−1(τ , v, q)(3.11)

and

1

C2
M(τ , v, q) ≤ G(τ , v, q ; 0) ≤ C2M(τ , v, q)(3.12)

hold for all (τ , v, q) ∈ V.
Proof. The upper bounds in both (3.11) and (3.12) follow easily from the triangle

inequality and (3.10).
To show the validity of the lower bound in (3.11), we first note that

‖τ − τ t‖ = ‖ (τ + q I − ε(v)) − (τ + q I − ε(v))
t ‖

≤ 2 ‖τ + q I − ε(v)‖.

We used symmetry of I and ε(v) and the triangle inequality above. Now integration
by parts and the Cauchy–Schwarz and Korn inequalities lead to

|(τ , ε(v))| =

∣∣∣∣
(

τ + τ t

2
, ε(v)

)∣∣∣∣ =

∣∣∣∣
(

τ + τ t

2
, ∇v

)∣∣∣∣
=

∣∣∣∣(τ , ∇v) −
(

τ − τ t

2
, ∇v

)∣∣∣∣ =

∣∣∣∣(−∇ · τ , v) −
(

τ − τ t

2
, ∇v

)∣∣∣∣
≤ ‖∇ · τ‖−1, D ‖v‖1 + ‖τ + q I − ε(v)‖ ‖∇v‖

≤ C (‖∇ · τ‖−1, D + ‖τ + q I − ε(v)‖) ‖ε(v)‖

≤ C G
1
2
−1(τ , v, q ;0) ‖ε(v)‖,(3.13)
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where G
1
2
−1(τ , v, q ;0) denotes the square root of G−1(τ , v, q ;0). To bound the

deformation rate tensor ε(v), it follows from the fact that

(q I, ε(v)) = (q, ∇ · v),

the Cauchy–Schwarz inequality, and (3.13) that

‖ε(v)‖2 = (ε(v) − τ − q I, ε(v)) + (τ , ε(v)) + (q, ∇ · v)

≤ ‖ε(v) − τ − q I‖ ‖ε(v)‖ + C G
1
2
−1(τ , v, q ;0) ‖ε(v)‖ + ‖q‖ ‖∇ · v‖

≤ ‖ε(v) − τ − q I‖2 + C G−1(τ , v, q ;0) +
1

2
‖ε(v)‖2 + ‖q‖ ‖∇ · v‖.

This implies that

‖ε(v)‖2 ≤ C G−1(τ , v, q ;0) + 2 ‖q‖ ‖∇ · v‖.(3.14)

Now to bound ‖q‖ in (3.14), since tr (τ + q I − ε(v)) = tr τ +d q−∇·v, we have

‖tr τ + d q −∇ · v‖ ≤ d ‖τ + q I − ε(v)‖.

It then follows from the triangle inequality that

‖q‖ ≤ 1

d
(‖tr τ + d q −∇ · v‖ + ‖tr τ‖ + ‖∇ · v‖)

≤ dG
1
2
−1(τ , v, q ;0) + ‖tr τ‖.(3.15)

Next, we bound ‖tr τ‖ above by the homogeneous functional and the L2 norm of
the deformation rate tensor. To do so, we first establish a similar upper bound for
‖A∞τ‖. Note that A2

∞ = A∞ and that (q I, A∞τ ) = 0. These identities and the
Cauchy–Schwarz inequality lead to

‖A∞τ‖2 = (τ , A∞τ ) = (τ + q I − ε(v), A∞τ ) + (ε(v), A∞τ )

≤ (‖τ + q I − ε(v)‖ + ‖ε(v)‖) ‖A∞τ‖,

which implies that

‖A∞τ‖ ≤ ‖τ + q I − ε(v)‖ + ‖ε(v)‖.(3.16)

Together with (3.9), inequality (3.16) yields

‖tr τ‖ ≤ ‖τ‖ ≤ C (‖A∞τ‖ + ‖∇ · τ‖−1,D)

≤ C (‖τ + q I − ε(v)‖ + ‖ε(v)‖ + ‖∇ · τ‖−1,D)

≤ C
(
G

1
2
−1(τ , v, q ;0) + ‖ε(v)‖

)
.(3.17)

Now, combining upper bounds in (3.14), (3.15), and (3.17) and using the Cauchy–
Schwarz inequality, we have

‖ε(v)‖2 ≤ C G−1(τ , v, q ;0) +
(
dG

1
2
−1(τ , v, q ;0) + ‖tr τ‖

)
‖∇ · v‖

≤ C G−1(τ , v, q ;0) + C
(
G

1
2
−1(τ , v, q ;0) + ‖ε(v)‖

)
‖∇ · v‖

≤ C G−1(τ , v, q ;0) + C ‖ε(v)‖ ‖∇ · v‖.
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Hence,

‖ε(v)‖2 ≤ C G−1(τ , v, q ;0),

which, together with (3.17), (3.15), and (3.9), implies that both ‖τ‖2 and ‖q‖2 are
also bounded above by the homogeneous functional G−1(τ , v, q ;0). This completes
the proof of the lower bound in (3.11). Since

G−1(τ , v, q ; 0) ≤ G(τ , v, q ; 0) and ‖∇ · τ‖2 ≤ G(τ , v, q ; 0),

then the lower bound in (3.12) follows from (3.11). The proof of the theorem is
therefore completed.

3.2. Least-squares functionals based on the stress-velocity formulation.
In this section, we derive the stress-velocity formulation by using relation (3.2) to elim-
inate the pressure. We then define least-squares functionals based on this formulation
and establish their ellipticity and continuity.

Assume that the first equation in (2.3) holds. Then it is easy to see that (3.2)
is equivalent to the incompressible condition, the second equation in (2.3). Relation
(3.2) says that the pressure is the negative of the arithmetic average of the normal
stress. Since the stress is a variable in our first-order system, using (3.2) we eliminate
the pressure in the first equation of (2.3) to obtain the following constitutive equation:

A∞ σ = σ − 1

d
(trσ) I = ε(u) in Ω.(3.18)

Note that taking the trace of this equation yields the incompressible condition. This
and the momentum equation define the stress-velocity formulation for incompressible
Newtonian fluid flow problems. In particular, for linear stationary problems, we have{

A∞ σ − ε(u) = 0 in Ω,

∇ · σ + f = 0 in Ω,
(3.19)

with boundary conditions (3.1). Let

Ṽ = XN ×H1
D(Ω)d.

For f ∈ L2(Ω)d, we define the following least-squares functionals:

G̃−1(σ, u ; f) = ‖A∞ σ − ε(u)‖2 + ‖∇ · σ + f‖2
−1,D(3.20)

and

G̃(σ, u ; f) = ‖A∞ σ − ε(u)‖2 + ‖∇ · σ + f‖2(3.21)

for (σ, u) ∈ Ṽ. We also define the norm functionals

M̃−1(τ , v) = ‖v‖2
1 + ‖τ‖2

and

M̃(τ , v) = ‖v‖2
1 + ‖τ‖2 + ‖∇ · τ‖2.
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Theorem 3.3. The homogeneous functionals G̃−1(τ , v; 0) and G̃(τ , v; 0) are
uniformly equivalent to the functionals M̃−1(τ , v) and M̃(τ , v), respectively; i.e.,
there exist positive constants C1 and C2 such that

1

C1
M̃−1(τ , v) ≤ G̃−1(τ , v ; 0) ≤ C1 M̃−1(τ , v)(3.22)

and

1

C2
M̃(τ , v) ≤ G̃(τ , v ; 0) ≤ C2 M̃(τ , v)(3.23)

hold for all (τ , v) ∈ Ṽ.
Proof. Since ‖tr τ‖ ≤ d ‖τ‖, Theorem 3.2 with the choice of q = −tr τ/d yields

the upper bounds in both (3.22) and (3.23) and the following lower bounds:

M̃−1(τ , v) ≤ C
(
G̃−1(τ , v ; 0) + ‖∇ · v‖2

)
and

M̃(τ , v) ≤ C
(
G̃(τ , v ; 0) + ‖∇ · v‖2

)
.

Now the lower bounds in both (3.22) and (3.23) are a direct consequence of the bound

‖∇ · v‖ = ‖tr (ε(v) −A∞ τ )‖ ≤ d ‖ε(v) −A∞ τ‖.

3.3. Least-squares finite element methods. In this section, we restrict our
attention to the least-squares method based on the L2 norm least-squares functional
G̃ for the stress-velocity formulation, although the method developed in this section
can be developed in the same manner for the stress-velocity-pressure formulation, and
discrete inverse norm methods can be developed for the inverse norm functionals (see
[6]). In fact, it seems that the least-squares method based on the stress-velocity formu-
lation may be preferable since it does not involve the pressure and, more importantly,
since it has mathematical structure similar to that of linear elasticity. Consequently,
we develop a unified numerical approach for both linear elasticity and linear, station-
ary incompressible Newtonian flows. The pressure, if desired, can be recovered using
(3.2).

The variational problem corresponding to the L2 norm least-squares functional
for the stress-velocity formulation is to minimize functional (3.21) over Ṽ, that is, to
find (σ, u) ∈ Ṽ such that

G̃(σ, u ; f) = inf
(τ ,v)∈Ṽ

G̃(τ , v ; f).(3.24)

By Theorem 3.3, we can conclude that (3.24) has a unique solution.
Now (3.24) very much resembles the variational problem for the least-squares

formulation of linear elasticity developed in [14]. In particular, the elasticity least-
squares problem for limiting case λ → ∞ is precisely (3.24). In [14], optimal accuracy
for the least-squares finite element approximations and optimal multigrid convergence
rates for solving the resulting algebraic equations are established to be uniform in λ.
This indicates that using the finite elements in [14] to discretize the least-squares
problem in (3.24) will give optimal accuracy, and multigrid methods with optimal
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complexity can be used to solve the resulting algebraic equations. For completeness,
we describe these finite elements and their approximation properties and comment on
multigrid methods for solving the resulting algebraic systems. For simplicity, we take
the two-dimensional case (d = 2).

Assuming that the domain Ω is polygonal, let Th be a regular triangulation of Ω
(see [16]) with triangular elements of size O(h). Let Pk(K) be the space of polynomials
of degree k on triangle K, and denote the local Raviart–Thomas space of order k on
K:

RTk(K) = Pk(K)2 +

(
x1

x2

)
Pk(K).

Then the standard H(div; Ω) conforming Raviart–Thomas space of order k [22] and
the standard (conforming) continuous piecewise polynomials of degree k + 1 are de-
fined, respectively, by

Σk
h={τ ∈ XN : τ |K ∈ RTk(K)2 ∀K ∈ Th} ⊂ XN ,(3.25)

V k+1
h ={v ∈ C0(Ω)2 : v|K ∈ Pk+1(K)2 ∀K ∈ Th, v = 0 on ΓD} ⊂ H1

D(Ω)2.(3.26)

Space Σk
h is used to approximate the stress, and space V k+1

h is used to approximate
the velocity. These spaces have the following approximation properties: let k ≥ 0 be
an integer, and let l ∈ (0, k + 1]:

inf
τ∈Σk

h

‖σ − τ‖H(div; Ω) ≤ C hl (‖σ‖l + ‖∇ · σ‖l)(3.27)

for σ ∈ H l(Ω)2×2 ∩ XN with ∇ · σ ∈ H l(Ω)2 and

inf
u∈V k+1

h

‖u − v‖1 ≤ C hl ‖u‖l+1(3.28)

for u ∈ H l+1(Ω)2 ∩ H1
D(Ω)2. Based on the smoothness of σ and u, we will choose

k + 1 to be the smallest integer greater than or equal to l.
The finite element discretization of our stress-velocity least-squares variational

problem is as follows: find (σh, uh) ∈ Σk
h × V k+1

h such that

G̃(σh, uh; f) = min
(τ ,v)∈Σk

h
×V k+1

h

G̃(τ , v; f).(3.29)

By Theorem 3.3 and the fact that Σk
h × V k+1

h is a subspace of Ṽ, (3.29) has a unique
solution. As proved in [14], we have the following error estimations.

Theorem 3.4. Assume that the solution (σ, u) of (3.24) is in H l(Ω)2×2 ×
H l+1(Ω)2 and that the divergence of the stress ∇ · σ is in H l(Ω)2. Let k + 1 be
the smallest integer greater than or equal to l. Then with (σh, uh) ∈ Σk

h × V k+1
h

denoting the solution to (3.29), the following error estimate holds:

‖σ − σh‖H(div; Ω) + ‖u − uh‖1 ≤ C hl (‖σ‖l + ‖∇ · σ‖l + ‖u‖l+1) .(3.30)

As for the pressure, it can be recovered algebraically using (3.2):

ph = −1

d
trσh.(3.31)
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It follows from (3.2), (3.31), the triangle inequality, and Theorem 3.4 that

‖p− ph‖ =
1

d
‖tr (σ − σh)‖ ≤ ‖σ − σh‖ ≤ C hl.(3.32)

Remark. Theorem 3.3 states that the homogeneous functional G̃(τ , v; 0) is equiv-
alent to the H(div; Ω) norm for the tensor variable and the H1 norm for the vector
variable. It is then well known that multigrid methods applied to discrete linear
system (3.29) have optimal convergence properties (see, e.g., [19, 2, 12, 20, 24]).

4. Pure Dirichlet boundary conditions. Many applications in incompress-
ible Newtonian fluid flow are not posed under traction boundary conditions. It is then
not necessary to use the stress as the independent variable. In fact, the stress and the
deformation rate tensor may not be the variables of choice, especially if the vorticity
is needed. This is because the vorticity is the skew-symmetric part of the velocity
gradient, and thus the stress and deformation rate tensor do not contain information
on the vorticity. For this reason, in this section we develop a least-squares method
involving variables that can recover the velocity gradient and vorticity without differ-
entiation. This least-squares method will use the finite element spaces described in
section 3.3.

For simplicity, we assume the homogeneous Dirichlet boundary condition

u = 0 on ∂Ω.(4.1)

4.1. First-order systems. Whereas the vorticity is the skew-symmetric part
of the velocity gradient, the deformation rate tensor ε(u) is the symmetric part of the
velocity gradient. From the second equation of first-order system (2.4), it is then not
possible to algebraically obtain the vorticity from the stress tensor. To accomplish
this, a new variable must be introduced in place of the stress. This new variable
should be chosen such that the resulting least-squares functionals have properties
similar to G−1 and G (G̃−1 and G̃) and such that both the stress and vorticity can be
algebraically obtained from this variable. Insight into designing this new variable can
be obtained by noting that for incompressible fluids the divergence of (∇u)

t
vanishes:

∇ · (∇u)
t
= ∇ ·

⎛
⎜⎝

∂1u1 · · · ∂1ud

...
...

...
∂du1 · · · ∂dud

⎞
⎟⎠ = ∇ (∇ · u) = 0.(4.2)

Specifically, defining the new independent tensor variable, the pseudostress, to be

σ̃ =
1

2
∇u − p I,(4.3)

then

σ = σ̃ +
1

2
(∇u)t,(4.4)

and so by (4.2) we have

∇ · σ̃ = ∇ · σ.(4.5)

Moreover, using the incompressibility of u, we have

tr σ̃ = trσ = −d p.(4.6)
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The pseudostress is not symmetric and probably not a primitive physical quantity.
However, the resulting first-order system is⎧⎪⎪⎨

⎪⎪⎩
−∇ · σ̃ = f in Ω,

σ̃ + p I − 1
2 ∇u = 0 in Ω,

∇ · u = 0 in Ω,

(4.7)

which is essentially equivalent to (2.4). Differentiating and eliminating σ̃ in (4.7)
leads to the incompressible Stokes equations:{

− 1
2 ∆u + ∇ p = f in Ω,

∇ · u = 0 in Ω.
(4.8)

4.2. Least-squares functionals. For f ∈ L2(Ω)d, we define the following least-
squares functionals based on first-order system (4.7):

F−1(σ̃, u, p ; f) = ‖∇ · σ̃ + f‖2
−1,0 +

∥∥∥∥σ̃ + p I − 1

2
∇u

∥∥∥∥
2

+ ‖∇ · u‖2(4.9)

and

F (σ̃, u, p ; f) = ‖∇ · σ̃ + f‖2 +

∥∥∥∥σ̃ + p I − 1

2
∇u

∥∥∥∥
2

+ ‖∇ · u‖2(4.10)

for (σ̃, u, p) ∈ V0 ≡ X0 ×H1
0 (Ω)d × L2

0(Ω).
Theorem 4.1. The homogeneous functionals F−1(τ , v, q ; 0) and F (τ , v, q ; 0)

are uniformly equivalent to the functionals M−1(τ , v, q) and M(τ , v, q), respectively;
i.e., there exist positive constants C1 and C2 such that

1

C1
M−1(τ , v, q) ≤ F−1(τ , v, q ; 0) ≤ C1M−1(τ , v, q)(4.11)

and

1

C2
M(τ , v, q) ≤ F (τ , v, q ; 0) ≤ C2M(τ , v, q)(4.12)

hold for all (τ , v, q) ∈ V0.
Proof. The theorem can be proved in a similar manner as in Theorem 3.2. Actu-

ally, the key inequality

‖∇v‖2 ≤ C F−1(τ , v, q ;0) + C ‖q‖ ‖∇ · v‖,(4.13)

which is similar to inequality (3.14), can be established easily: integration by parts
and the Cauchy–Schwarz inequality lead to

1

2
‖∇v‖2 =

(
1

2
∇v − τ − q I, ∇v

)
− (∇ · τ , v) + (q, ∇ · v)

≤
∥∥∥∥1

2
∇v − τ − q I

∥∥∥∥ ‖∇v‖ + ‖∇ · τ‖−1,0 ‖v‖1 + ‖q‖ ‖∇ · v‖.

Now (4.13) follows from the Poincaré and ε inequalities.



856 ZHIQIANG CAI, BARRY LEE, AND PING WANG

As in section 3.2, we can derive the following first-order system without the pres-
sure: {

A∞ σ̃ − 1
2 ∇u = 0 in Ω,

∇ · σ̃ + f = 0 in Ω.
(4.14)

The corresponding least-squares functionals are

F̃−1(σ̃, u ; f) =

∥∥∥∥A∞ σ̃ − 1

2
∇u

∥∥∥∥
2

+ ‖∇ · σ̃ + f‖2
−1,0(4.15)

and

F̃ (σ̃, u ; f) =

∥∥∥∥A∞ σ̃ − 1

2
∇u

∥∥∥∥
2

+ ‖∇ · σ̃ + f‖2(4.16)

for (σ̃, u) ∈ Ṽ0 ≡ X0 ×H1
0 (Ω)d.

Theorem 4.2. The homogeneous functionals F̃−1(τ , v; 0) and F̃ (τ , v; 0) are
uniformly equivalent to the functionals M̃−1(τ , v) and M̃(τ , v), respectively; i.e.,
there exist positive constants C1 and C2 such that

1

C1
M̃−1(τ , v) ≤ F̃−1(τ , v ; 0) ≤ C1 M̃−1(τ , v)(4.17)

and

1

C2
M̃(τ , v) ≤ F̃ (τ , v ; 0) ≤ C2 M̃(τ , v)(4.18)

hold for all (τ , v) ∈ Ṽ0.
Proof. The theorem can be shown in a similar fashion as in Theorem 3.3.
Remark. The mixed variational problem based on (4.14) is to find (σ̃, u) ∈

X0 × L2
0(Ω)d such that{

(A∞ σ̃, τ ) + 1
2 (u, ∇ · τ ) = 0 ∀ τ ∈ X0,

(∇ · σ̃, v) = −(f , v) ∀ v ∈ L2(Ω)d.
(4.19)

It is easy to see that (4.19) is essentially a vector version of the mixed formulation for
the second-order elliptic problems. Therefore, any stable pair of finite elements for
the second-order elliptic problems (see [8]) is also a stable approximation for (4.19).
This will be studied in a forthcoming paper.

4.3. Least-squares finite element methods. The variational problem for the
L2 norm least-squares formulation of (4.14) is to minimize least-squares functional
(4.16) over Ṽ0, that is, to find (σ̃, u) ∈ Ṽ0 such that

F̃ (σ̃, u ; f) = inf
(τ ,v)∈Ṽ0

F̃ (τ , v ; f).(4.20)

By Theorem 4.2, (4.20) has a unique solution. The discrete finite element problem is
to find (σ̃h, uh) ∈ Σk

h × V k+1
h such that

F̃ (σ̃h, uh; f) = min
(τ ,v)∈Σk

h
×V k+1

h

F̃ (τ , v; f).(4.21)
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Since Σk
h × V k+1

h is a subspace of Ṽ0 (ΓD = ∂Ω and ΓN = ∅), by Theorem 4.2, (4.21)
has a unique solution. We have the following error estimate for the finite element
approximation.

Theorem 4.3. Assume that the solution (σ̃, u) of (4.20) is in H l(Ω)2×2 ×
H l+1(Ω)2 and that ∇ · σ̃ is in H l(Ω)2. Let k + 1 be the smallest integer greater
than or equal to l. Then with (σ̃h, uh) ∈ Σk

h × V k+1
h denoting the solution to (4.21),

the following error estimate holds:

‖σ̃ − σ̃h‖H(div; Ω) + ‖u − uh‖1 ≤ C hl (‖σ̃‖l + ‖∇ · σ̃‖l + ‖u‖l+1) .(4.22)

4.4. Computation of pressure, stress, and vorticity. Physical quantities
such as pressure, stress, and vorticity can be approximated in terms of σ̃h. For the
pressure, (4.6) gives

p = −1

d
tr σ̃.(4.23)

For the stress, note that the first equation in (4.14) gives

∇u = 2A∞ σ̃.(4.24)

This, together with (4.4), implies

σ = σ̃ +
1

2
(∇u)

t
= σ̃ + (A∞ σ̃)

t
= A∞ σ̃ + σ̃t.(4.25)

For the vorticity ω = ∇ × u, it can be expressed in terms of the entries of the
skew-symmetric part of the velocity gradient and, hence, the pseudostress σ̃. More
precisely, letting s = 1

2 (∇u − (∇u)t), the definition of the curl operator gives

ω =

{
2s21(u) if d = 2,

2(s32(u), s13(u), s21(u))t if d = 3.

Then by (4.24) we have

s(u) = A∞ σ̃ − (A∞ σ̃)
t
= σ̃ − σ̃t

and, hence,

ω = 2

{
σ̃21 − σ̃12 if d = 2,

(σ̃32 − σ̃23, σ̃13 − σ̃31, σ̃21 − σ̃12)
t if d = 3.

(4.26)

Equations (4.23), (4.25), and (4.26) suggest that we can approximate the pressure,
stress, and vorticity as

ph = −1

d
tr σ̃h, σh = A∞ σ̃h + (σ̃h)t,

ωh = 2

{
σ̃h

21 − σ̃h
12 if d = 2,

(σ̃h
32 − σ̃h

23, σ̃
h
13 − σ̃h

31, σ̃
h
21 − σ̃h

12)
t if d = 3.

From (4.23), (4.25), (4.26), the triangle inequality, and Theorem 4.3, we have the
following error estimates:

‖p− ph‖ =
1

d
‖tr(σ̃ − σ̃h)‖ ≤ C hl,

‖σ̃ − σ̃h‖ = ‖A∞(σ̃ − σ̃h) + (σ̃ − σ̃h)t‖ ≤ C hl,

‖ω − ωh‖ ≤ C ‖σ̃ − σ̃h‖ ≤ C hl.
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4.5. Weakly imposed boundary conditions. In the previous sections, bound-
ary conditions were imposed on the solution spaces. This leads to least-squares finite
element approximations that are more accurate on the boundary than in the interior
of the domain. In the context of least-squares methods, it is natural to treat bound-
ary conditions weakly through boundary functionals. This is also convenient for many
applications.

As an example of least-squares boundary functionals, we describe a least-squares
functional with boundary terms for first-order system (4.14):

F̃b(σ̃, u ; f) =

∥∥∥∥A∞ σ̃ − 1

2
∇u

∥∥∥∥
2

+ ‖∇ · σ̃ + f‖2 + ‖u‖2
1
2 ,∂Ω.(4.27)

The least-squares variational problem is to minimize this functional over a solution
space free of imposed boundary conditions: find (σ̃, u) ∈ Ṽb ≡ X0 × H1(Ω)d such
that

F̃b(σ̃, u ; f) = inf
(τ ,v)∈Ṽb

F̃b(τ , v ; f).(4.28)

Using techniques in this paper and in the proof of Theorem 5.1 in [14], we can show
that there exists a positive constant C such that

1

C
M̃(τ , v) ≤ F̃b(τ , v ; 0) ≤ C M̃(τ , v)(4.29)

for all (τ , v) ∈ Ṽb. To develop computable finite element methods and the corre-
sponding iterative solvers based on this functional, see [23].

4.6. Relation to existing least-squares methods. There are many existing
least-squares methods for the Stokes equations. Since the pseudostress σ̃ involves the
velocity gradient and the pressure, our approach has some similarities with the meth-
ods in [11, 15]. In [11], the velocity gradient is introduced as an independent variable;
two additional (consistent) constraints (vanishing trace and curl of the velocity gradi-
ent) are added to the original system; the variables of the least-squares method are the
velocity, velocity gradient, and pressure; and the homogeneous L2 norm least-squares
functional is elliptic and continuous in (H(div; Ω)d∩H(curl ; Ω)d)×H1(Ω)d×H1(Ω),
where H(curl ; Ω) is the Hilbert space consisting of square-integrable vectors whose
curls are also square-integrable. In [15], a constrained velocity gradient (the velocity
gradient satisfying the incompressibility condition) is introduced as an independent
variable; the least-squares method is based on the div-curl system of the constraint
velocity gradient and the pressure; and the homogeneous functional is elliptic and
continuous in (H(div; Ω)d ∩H(curl ; Ω)d) ×H1(Ω). Both methods require sufficient
smoothness for the original problem, and, hence, their applicability is very limited.

As a side remark, we comment that the div-curl least-squares method can be
developed for our formulations. To see this, applying the curl operator to the first
equation of (4.14) leads to the following div-curl system:{

∇× (A∞ σ̃) = 0 in Ω,

∇ · σ̃ + f = 0 in Ω,
(4.30)

with boundary conditions n × (A∞ σ̃) = n × ∇u = 0 on ∂Ω. The corresponding
least-squares functionals are defined as

F̄−1(σ̃; f) = ‖∇ × (A∞ σ̃) ‖2
−1,0 + ‖∇ · σ̃ + f‖2

−1(4.31)
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and

F̄ (σ̃; f) = ‖∇ × (A∞ σ̃) ‖2 + ‖∇ · σ̃ + f‖2.(4.32)

These div-curl approaches will be studied in a forthcoming paper.

REFERENCES

[1] D. N. Arnold, J. Douglas, and C. P. Gupta, A family of higher order mixed finite element
methods for plane elasticity, Numer. Math., 45 (1984), pp. 1–22.

[2] D. N. Arnold, R. S. Falk, and R. Winther, Multigrid in H(div) and H(curl), Numer. Math.,
85 (2000), pp. 197–218.

[3] P. B. Bochev and M. D. Gunzburger, Analysis of least-squares finite element methods for
the Stokes equations, Math. Comp., 63 (1994), pp. 479–506.

[4] P. B. Bochev and M. D. Gunzburger, Least-squares for the velocity-pressure-stress formula-
tion of the Stokes equations, Comput. Methods Appl. Mech. Engrg., 126 (1995), pp. 267–
287.

[5] P. B. Bochev and M. D. Gunzburger, Finite element methods of least-squares type, SIAM
Rev., 40 (1998), pp. 789–837.

[6] J. H. Bramble, R. D. Lazarov, and J. E. Pasciak, A least-squares approach based on a
discrete minus one inner product for first order system, Math. Comp., 66 (1997), pp. 935–
955.

[7] J. H. Bramble and J. E. Pasciak, Least-squares method for Stokes equations based on a
discrete minus one inner product, J. Comput. Appl. Math., 74 (1996), pp. 155–173.

[8] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, New York,
1991.

[9] F. Brezzi, J. Rappaz, and P. A. Raviart, Finite-dimensional approximation of nonlinear
problems, Part 1: Branches of nonsingular solutions, Numer. Math., 36 (1980), pp. 1–25.

[10] Z. Cai, T. Manteuffel, and S. McCormick, First-order system least squares for velocity-
vorticity- pressure form of the Stokes equations, with application to linear elasticity, Elec-
tron. Trans. Numer. Anal., 3 (1995), pp. 150–159.

[11] Z. Cai, T. A. Manteuffel, and S. F. McCormick, First-order system least squares for the
Stokes equations, with application to linear elasticity, SIAM J. Numer. Anal., 34 (1997),
pp. 1727–1741.

[12] Z. Cai, R. R. Parashkevov, T. F. Russell, J. D. Wilson, and X. Ye, Domain decomposition
for a mixed finite element method in three dimensions, SIAM J. Numer. Anal., 41 (2003),
pp. 181–194.

[13] Z. Cai and G. Starke, First-order system least squares for the stress-displacement formula-
tion: Linear elasticity, SIAM J. Numer. Anal., 41 (2003), pp. 715–730.

[14] Z. Cai and G. Starke, Least-squares methods for linear elasticity, SIAM J. Numer. Anal., 42
(2004), pp. 826–842.

[15] C. Chang, A mixed finite element method for the Stokes problem: An acceleration pressure
formulation, Appl. Math. Comput., 36 (1990), pp. 135–146.

[16] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North–Holland, Amsterdam,
1978.

[17] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory
and Algorithms, Springer, New York, 1986.

[18] M. D. Gunzburger, Finite Element Methods for Viscous Incompressible Flows, Academic
Press, Boston, 1989.

[19] W. Hackbusch, Multi-Grid Methods and Applications, Springer, New York, 1985.
[20] R. Hiptmair, Multigrid method for Maxwell’s equations, SIAM J. Numer. Anal., 36 (1998),

pp. 204–225.
[21] B. Jiang, The Least-Squares Finite Element Method: Theory and Applications in Computa-

tional Fluid Dynamics and Electromagnetics, Springer, Berlin, 1998.
[22] P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic

problems, in Mathematical Aspects of Finite Element Methods, Lecture Notes in Math.
606, I. Galligani and E. Magenes, eds., Springer, New York, 1977, pp. 292–315.

[23] G. Starke, Multilevel boundary functionals for least-squares mixed finite element methods,
SIAM J. Numer. Anal., 36 (1999), pp. 1065–1077.

[24] P. S. Vassilevski and J. Wang, Multilevel iterative methods for mixed finite element dis-
cretizations of elliptic problems, Numer. Math., 63 (1992), pp. 503–520.


