Min Chen

Professor of Mathematics, Purdue University

Comparisons between the BBM equation and a Boussinesq system

Abstract

This project aims to cast light on a Boussinesq system of equations modelling two-way propagation of surface waves. Included in the study are existence results, comparisons between the Boussinesq equations and other wave models, and several numerical simulations. The existence theory is in fact a local well-posedness result that becomes global when the solution satisfies a practically reasonable constraint. The comparison result is concerned with initial velocities and wave profiles that correspond to unidirectional propagation. In this circumstance, it is shown that the solution of the Boussinesq system is very well approximated by an associated solution of the KdV or BBM equation over a long time scale of order ${1 \over \epsilon}$, where $\epsilon$ is the ratio of the maximum wave amplitude to the undisturbed depth of the liquid. This result confirms earlier numerical simulations and suggests further numerical experiments which are reported here.