

Exam 1 (1-14)

1.1 DE and Mathematical models

· Differential Equation: any equation that contains derivatives

Satisfying DE:

- "If given a general solution Monipulate it to
- address the derivatives
- ·Solve for constant
- "Write solution in y= form

Ex) Find all solutions of y"+y'-zy=0 in form of y=erx (r is some constant)

$$\begin{array}{c} y_{1}^{*} \in e^{rx} \\ y_{1}^{*} = e^{rx} \\ y_{1}^{*} = r^{*} e^{rx} \\ z_{1}^{*} = z_{2}^{*} = 0 \\ z_{1}^{*} = z_{2}^{*} = z_{2}^{*} \\ z_{1}^{*} = z_{2}^{*} = z_{2}^{*} \\ z_{1}^{*} = z_{2}^{*} \\ z_{2}^{*} = z_{1}^{*} \\ z_{2}^{*} = z_{2}^{*} \\ z_{1}^{*} = z_{2}^{*} \\ z_{2}^{*} = z_{1}^{*} \\ z_{2}^{*} = z_{2}^{*} \\ z_{1}^{*} = z_{2}^{*} \\ z_{2}^{*} = z_{1}^{*} \\ z_{2}^{*} = z_{2}^{*} \\ z_{1}^{*} = z_{2}^{*} \\ z_{2}^{*} = z_{1}^{*} \\ z_{2}^{*} = z_{2}^{*} \\ z_{1}^{*} = z_{2}^{*} \\ z_{2}^{*} = z_{2}^{*} \\ z_{2}^{*} = z_{2}^{*} \\ z_{1}^{*} = z_{2}^{*} \\ z_{2}^{*} = z_{2}^{*} \\ z_{2}^{*} = z_{2}^{*} \\ z_{2}^{*} = z_{2}^{*} \\ z_{1}^{*} = z_{2}^{*} \\ z_{2}^{*} \\ z_{2}^{*} = z_{2}^{*} \\ z$$

$$e^{ix}(r^2+r-2)=0 \longrightarrow e^{ix} \neq 0$$
 for any x so $i^2+r-2=0 \longrightarrow r=-2$ and $r=1$

Solutions:
$$y = e^{2x}$$
 and $y = e^{x}$

1.2 Integrals as General and Particular Solutions

"General solution: contains "c" .. infinitely many solutions

$$Ex) \quad \underline{y} = X^{2} + C$$

"Particular Solution: Equation that doesn't have Variable representing a constant

Ex)
$$y(x) = a$$
 $y(x) = x^2 + C$ so $y = x^2 + \partial$

 $E_{x} \frac{dx}{dx} = \frac{1}{x^{2}+1} \quad y(0) = 10$ $x = 2tan\theta \longrightarrow dx = 2sec^{2}\theta d\theta$ Trig Sub : $\theta = tan^{-1}(\frac{3}{2})$

 $y = \int \frac{1}{4(\tan^2\theta + 1)} dx \longrightarrow y = \int \frac{1}{4(\tan^2 + 1)} \cdot 2\sec^2\theta d\theta \longrightarrow y = \int \frac{2\sec^2\theta}{4\sec^2\theta} \longrightarrow y = \int \frac{1}{2}d\theta = \frac{1}{2}\theta + C$ $y = \int \frac{1}{4(\tan^2\theta + 1)} dx \longrightarrow y = \int \frac{1}{2}d\theta = \frac{1}{2}\theta + C$ $y = \int \frac{1}{4(\tan^2\theta + 1)} dx \longrightarrow y = \int \frac{1}{2}d\theta = \frac{1}{2}\theta + C$

O(t) = V'(t) = C''(t) Sa(t) = V(t) = C'(t)Sa(t) = SV(t) = C(t)

1.3 Slope Field and Solution Curves

1.4 separable Equations

 $Application: \frac{dy}{dt} = (concentration is) (flow rate is) - (conc. out) (flow out) = (\frac{1}{2} \frac{dy}{dt}) (4 gal/min) - (\frac{1}{600} \frac{dy}{dt}) (4 gal/min)$

$$\frac{\partial y}{\partial t} = \partial - \left(\frac{y}{Volume of} \right) (6)$$

$$\frac{\partial y}{\partial t} = \partial - \left(\frac{y}{Volume of} \right) (6)$$

$$\frac{\partial y}{\partial t} = \partial - \left(\frac{y}{Volume of} \right) (6)$$

$$\frac{\partial y}{\partial t} = \partial - \left(\frac{y}{Volume of} \right) (6)$$

1.6 substitution Method and Exact Equations Part I

$$\frac{\partial y}{\partial x} = f(ax + by + c) \quad \text{then } V = ax + by + c \quad a_{12}a_{23}s \quad works$$

$$Ex) \quad \frac{\partial y}{\partial x} = (3x - 2y + 5)^{4}$$

homogeneous if $\frac{ds}{dx} = f(\frac{s}{x})$

(make substitution V= = then transform into separable and/or first-order linear)

Example : y' (x+ 2y) = 6x - y

1) Manipulate equation to get all variables in 😤 form	4) separate 0x with x and dU with V
$y' = \frac{(x+y)}{(x+y)} = \frac{x}{1-\frac{y}{2}} V = \frac{y}{x}$	then integrate
2) sub in v for \$, find y', sub in for y'	$\frac{1+2v}{6-2v-2v^2} dv = \frac{1}{x} dx$
$V = \frac{W}{X}$	$ \begin{array}{c} U = 6 - 2v - 2v^{2} \\ 0u = -2 - 4v \\ = -1(v, z_{1}) \end{array} $
$Y = Vx \qquad V + v'x = \frac{6-v}{1+2v}$	$-\frac{1}{2}\int du = ln x +c$
y'= v+ v'x	$-\frac{1}{2}l_{0} u = l_{0} x + C$
3) I so late V to one side and when V' in ax	$\mathcal{U} = \mathbf{x}^{-\mathbf{z}}\mathbf{C}$
$\sqrt{\chi} = \frac{6}{1+4\nu} - \sqrt{\chi} = \frac{6-\sqrt{\chi}}{1+2\nu} - \frac{\sqrt{(1+2\nu)}}{\sqrt{(1+2\nu)}}$	5) Unsulo UL and U
$\frac{1}{\sqrt{2}} \frac{6}{2} \frac{2}{\sqrt{2}} \frac{2}{\sqrt{2}}$	$6 - 2v - 2v^2 = \frac{c}{x_1} - 5 - 6 - 2\frac{a}{x} - 2(\frac{a}{x})^2 = \frac{c}{x_2}$
$\frac{\partial \mathbf{v}}{\partial \mathbf{x}} \mathbf{x} = \frac{\partial \mathbf{v} \mathbf{v}}{(\mathbf{v} \cdot \mathbf{x})}$	$6 \times^2 - 2y \times - 2y^2 = C$

Bernoulli Differential Equation Always want coefficient of y to = 1

y' + P(x)y = Q(x)y' $\Omega \neq 0$ (These matter the DE $\Omega \neq 1$) separative or index?

- 1) Substitution : V=y'"
- 2) Solve for y then y'(use product rule)
- 3) Solve for V
- 4) Undo supstitution

Example:
$$2x^{2}y'+6xy = 14y^{3}$$

1) convert to
Bernoulli format $y' + \frac{3x}{x} = \frac{7y^{3}}{x^{2}}$
2) Find $y':$
 $y' = -2y^{-3}$, y'
 $y' = -2y^{-3}$, y

Substitution

Mdx + N dy = 0 and My = Nx } Exact Differential Equation

Example $(3x^{2}+2y^{2})dx + (4xy+6y^{2})dy = 0$ Process for Exact

1) Test if exact (My = Nx)4y = 4y $\sqrt{}$ 30 : there's a function f(x,y) such that $f_x = M = 3x^2 + 2y^2$ $f_y = N = 4xy + 6y^2$

2) Recover f by picking M or N and integrating

 $\frac{\partial f}{\partial x} = 3x^2 + 3y^2 \longrightarrow f = \int (3x^2 + 2y^2) dx$ $x^3 + 2xy^2 + g(y)$

3) Find gly) by taking partial with respect to y and compare to N (must be equal to N) $\frac{1}{1000} \frac{1}{1000} \frac{1}{1000}$

 $g'(y) = 6y^2$ so $g(y) = 2y^3 + C$,

4) Plug gly) back into f(x,y)

$$f(x,y) = x^3 + 2y^3 + 2y^3 + C.$$
Solution of this exect DE is $f(x,y) = C$

$$f(x,y) = x^3 + 2y^3 + 2y^3 + C, = C$$

$$\begin{bmatrix} x^3 + 2y^3 + 2y^3 + C, = C \\ \hline x^3 + 2y^3 + 2y^3 + C, = C \\ \hline x^3 + 2y^3 + 2y^2 = C \end{bmatrix}$$
(Product(Shic: Byynomials (for second on De) \longrightarrow We have negret by the operation of the second on De) \longrightarrow We have negret by the operation of the second on De) \longrightarrow We have negret by the second of De) \longrightarrow We have negret by the second of De) \longrightarrow We have negret by the second of De) \longrightarrow Solution : $y^{i} + ay^{i} + by^{i} +$

If y is not present
Ex)
$$xy + y' = x$$

such that $P = \frac{1}{2}x + \frac{1}{2}x$
 $f_{y} = \frac{1}{2}x + \frac{1}{2}x + \frac{1}{2}x + \frac{1}$