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1 Introduction

The partitions of n ∈ N are tuples of positive integers (a1, a2, . . . , ak) such that a1 ≥
a2 ≥ . . . ≥ ak and a1 + a2 + · · ·+ ak = n. Using Π[n] to denote the set of such partitions,
the quantities p(n) := card(Π[n]) are the (ordinary) partition numbers. In 1918 Hardy and
Ramanujan used the functional equation of the Dedekind η-function to give an asymptotic
formula for p(n) as n → ∞; namely, in [13] they establish (in addition to stronger results)
that

log p(n) ∼ κ
√
n, where κ := π

√
2/3, (1.1)

and the relation a(n) ∼ b(n) indicates that limn→∞ a(n)/b(n) = 1. At nearly the same
time Ramanujan announced and proved his eponymous “congruences”, which are the
relations that

p(5n+ 4) ≡ 0 (mod 5), p(7n+ 5) ≡ 0 (mod 7), and p(11n+ 6) ≡ 0 (mod 11).

Recent years have seen a surge of interest in partition theory led by researchers including
B. Berndt, A. Malik, R. C. Vaughan, and A. Zaharescu (see, e.g., [3,10,19,20]). Here we
discuss our work on both arithmetic and analytic aspects of the novel class of “signed”
partition enumerations involving multiplicative f : N → {0,±1}. Following this, we
discuss a few problems toward developing more general results on some families of signed
partition numbers.

2 Past Work

Let f : N → {0,±1}, and for n ∈ N and any partition π = (a1, a2, . . . , ak) ∈ Π[n] let

f(π) := f(a1)f(a2) · · · f(ak). (2.1)

With this we define the signed partition numbers

p(n, f) =
∑

π∈Π[n]

f(π). (2.2)

Definition (2.2) generalizes several classical partition-related quantities, e.g., with the
constant function 1 one has p(n) = p(n, 1), and with the indicator function 1A for A ⊂ N,
the quantities p(n,1A) are the A-restricted partition numbers. Many examples and families
of restricted partitions numbers are well studied (see, e.g., [1, 12]).
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2.1 Arithmetic work; q-series and periodic vanishings. We say a sequence (an)N
vanishes on an arithmetic progression (or has a periodic vanishing) if one has ajm+r = 0
for some 0 ≤ r < m and all j ≥ 0. In such a case we may say that an “vanishes on all
n ≡ r (mod m)”. The past two decades have seen a boom of work on periodic vanishings
in the coefficients of various q-series; we note [4,5,14,16,18] as only a small portion of the
extant literature.

Two 10-periodic vanishings in sequences (p(n, f))N related to the Legendre symbol
χ5(n) := (n

5
) were recently discovered by the author. In addition to χ5(π), defined via

(2.1), for any partition π = (a1, a2, . . . , ak) of any positive n we set

χ†
5(π) := (−1)kχ5(π) = (−1)kχ5(a1)χ5(a2) · · ·χ5(ak).

One of the primary results of [8] is given in the following theorem.

Theorem 2.1. One has that

p(n, χ5) = 0 for n ≡ 2 (mod 10),

p(n, χ†
5) = 0 for n ≡ 6 (mod 10).

In [8], Theorem 2.1 is proved using the theory of q-series identities and extensive
symbolic manipulations. A “soft” explanation of the periodic vanishing demonstrated by
p(n, χ5) is provided by the following asymptotic formula.

Theorem 2.2 ([9, Thm. 1.7]). As n → ∞ one has

p(n, χ5) = a5n
−3/4 exp

(
1
2
κ
√

4
5
n
)[

1 + (−1)nb5 + d5 cos
(
2π
5
n− π

10

)
+O(n−1/5)

]
, (2.3)

where

κ = π
√

2
3
, a5 =

(
3 +

√
5

960

)1/4

, b5 =
3−

√
5

2
, and d5 =

√
2(5−

√
5).

Ignoring the error term O(n−1/5) in (2.3) and considering the 10-periodic term

S(n) := 1 + (−1)n
(
3−

√
5

2

)
+

√
2(5−

√
5) cos

(
2πn

5
− π

10

)
,

it is surprising to find that

S(2) = 0 and S(n) ̸= 0 for 1 ≤ n ≤ 10 with n ̸= 2.

This provides a soft explanation for the periodic vanishing of p(n, χ5). The surprising
nature of this periodic vanishing is amplified by the following further result.

Theorem 2.3 ([9, Thm. 1.10]). For odd primes p, let χp = χp(n) denote the Legendre
symbol (n

p
). If p ̸= 5 and p ̸≡ 1 (mod 8), then the sequence (p(n, χp))N does not vanish on

any arithmetic progression.
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2.2 Asymptotic results on some p(n, f). When f assumes both positive and negative
values one expects these signs to cause cancellations in the sums p(n, f). We recall the
Möbius µ and Liouville λ functions from prime number theory: If n = pa11 pa22 · · · parr with
distinct primes pi and all ai ≥ 1, then

λ(n) := (−1)a1+···+ar and µ(n) :=

{
(−1)r if all ai = 1,

0 otherwise.

The following result is an immediate corollary of the main results of [7].

Theorem 2.4. For all ε > 0, as n → ∞ one has

p(n, µ) = O
(
e(1+ε)

√
n
)

and p(n, λ) = O
(
e(

1
2
+ε)κ

√
n
)
, (2.4)

where κ = π
√
2/3. In addition, for positive integer k, as k → ∞ one has

log p(2k, µ) ∼
√
2k and log p(2k, λ) ∼ 1

2
κ
√
2k. (2.5)

Given the relations of (2.5), it is natural to consider to what extent those relations
“extend” to odd n. In [6] this question is answered under mild assumptions on the zeros
of the Riemann zeta function ζ(s). Let Θ := sup{Re(ρ) : ζ(ρ) = 0}. It is well known that
1
2
≤ Θ ≤ 1; the assertion that Θ = 1

2
is the Riemann Hypothesis (RH).

Again for odd primes p let χp(n) denote the Legendre symbol (n
p
). In [9], asymptotic for-

mulae for different families of Legendre-signed partition numbers p(n, χp) are established,
where primes are separated by their residue modulo 8.

Theorem 2.5 ([9, Thm. 1.3]). Let p be an odd prime such that p ̸= 5 and p ≡ 1 (mod 4),
and let L(s, χp) be the Dirichlet L-function for χp. As n → ∞ one has

p(n, χp) = apn
−3/4 exp

(
1
2
κ
√

(1− 1
p
)n

)[
1 + (−1)nbp +O(n−1/5)

]
,

where

κ = π
√
2/3, ap =

(
p−1
384p2

) 1
4 exp(1

4

√
pL(1, χp))

and

bp =

{
1 p ≡ 1 (mod 8),

exp(−√
pL(1, χp)) p ≡ 5 (mod 8) and p ̸= 5.

The corresponding asymptotic formulae for p ≡ 3 (mod 4) are similar to those of The-
orem 2.5 but involve far more complicated constants. As such, we present the following
simpler asymptotic result, which is Corollary 1.6 in [9].

Theorem 2.6. If p ≡ 7 (mod 8), then as n → ∞ one has

p(n, χp) ≍ n
√
pL(1,χ)/4π−3/4 exp

(
1
2
κ
√
(1− 1

p
)n

)
.

If p ≡ 3 (mod 8), then as n → ∞ one has the stronger relation

p(n, χp) ∼ apn
√
pL(1,χ)/4π−3/4 exp

(
1
2
κ
√
(1− 1

p
)n

)
,
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where

ap =

(
p− 1

384 p2

) 1
4

exp

(√
pL(1, χ)

2π

(
γ +

1

2
log

(
384

p(p− 1)

)
− L′(1, χ)

L(1, χ)

))
,

where γ is the Euler-Mascheroni constant.

3 Proposed research

The novelty of the results of Theorems 2.2 and 2.3 indicate that sequences p(n, χp)N
involving primes p ≡ 1 (mod 8) should be further explored. Basic empirical computations
have been done, but these computations further indicate that the periodic vanishing of
p(n, χ5) is indeed quite rare.

Problem 3.1. Establish the presence of periodic vanishings, or lack thereof, in sequences
(p(n, χp))N where p ≡ 1 (mod 8).

When p ≡ 1 (mod 4), the generating function

p−1∏
r=1

(χp(r)q; q
p)−1

∞ = 1 +
∞∑
n=1

p(n, χp)q
n

can be expressed as a quotient of η(q) and of Jacobi θ-functions, and thus enjoys a
modular-like functional equation. This functional transformation relation allows one to
give a convergent series representation for the coefficients p(n, χp), à-la Rademacher’s
convergent series for the ordinary partition numbers p(n, 1).

Specifically, using the abbreviations κ = π
√
2/3 and λn =

√
n− 1/24, Rademacher

establishes [17] that

p(n) = κ(384)−
1
4λ

3
4
n

∞∑
k=1

Ak(n)k
−1I 3

2
(κλn/k), (3.1)

where Iν(z) is the modified Bessel function of the first kind, and Ak(n) is related to the
classical Kloosterman sums.

For fixed p ≡ 1 (mod 4) let

Lk(n) :=
∑′

0<h≤k

exp
{
πiΛ(h, k)− 2πihn/k

}
, (3.2)

where Λ(h, k) is a certain “character-twisted” Dedekind sum. Specifically,

Λ(h, k) = 1
2

{
sχ(h, k)− sχ(2h, k)

}
+ 1

2

{
s(2h, k)− s(2hp, k)

}
, (3.3)

sχ(h, k) :=
∑

µmod [k,p]

χ(µ)((hµ/k))((µ/[k, p])), (3.4)

where [k, p] = lcm(k, p), and ((x)) = 0 for x ∈ Z and ((x)) = x − [x] − 1
2
otherwise. We

note that when (k, p) = 1, our sχ(h, k) agrees with the sχ(h, k) in Berndt’s notation [2].
Considering Rademacher’s formula (3.1), it is clear that, hypothetically, p(n) would

vanish if all Ak(n) = 0; this is, of course, not the case for p(n). However, an analogous
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such series for p(n, χp) could be used to give more direct, analytic1 proofs of periodic
vanishings of some p(n, χp).

We are currently making progress on the following results, the first of which is to appear
in an in-preparation manuscript by the author.

Theorem 3.2 (In preparation). One has

p(n, χ17) = 0 for all n ≡ 17, 19, 25, 27 (mod 34).

Equivalently, one has p(n, χ17) = 0 precisely when n is odd and 1− 24n is congruent to a
quartic residue (mod 17). In addition, one has

p(n, χ†
17) = 0 for all n ≡ 11, 15, 29, 33 (mod 34),

or, equivalently, for n odd and congruent to a quadratic-nonquartic residue (mod 17).

Claim 3.3 (Proof in progress). One further has

p(n, χ17) = p(n, χ†
17) for all n ≡ 3, 7, 13, 31 (mod 34),

p(n, χ17) = −p(n, χ†
17) for all n ≡ 1, 9, 21, 23 (mod 34).

Conjecture 3.4. The only odd primes for which p(n, χp) and p(n, χ†
p) vanish on some

arithmetic progressions (mod 2p), as seen above, are 5 and 17.

In particular, applying Rademacher’s and Lehner’s techniques [15, 17], one finds that
for p < 24, one has

p(n, χp) ∼
∞∑
k=1

2 ∤k, p ∤k

{
λkLk(n) + λ2kL2k(n)

}
I1
(
f(k, n)

)
/k,

+
∞∑
k=1

4|k, p ∤k

{
λkLk(n)

}
I1
(
f(k, n)

)
/k +

∞∑
k=1

2 ∤k, p|k

{
L+
k (n)

}
I1
(
g(k, n)

)
/k,

(3.5)

where the λk are related to elements of certain cyclotomic fields (see, e.g., [11, p. 10
ff.]), the function I1 is the modified Bessel function of the first kind, and f and g are
elementary functions. The quantity L+

k (n) here is a modified version of the sum (3.2),
wherein the sum in (3.2) is changed to only sum over those h (mod k) such that (h, k) = 1
and χ(h) = +1.

Determination of the sums Lk above requires detailed knowledge on congruences of the
quantity 24kΛ(h, k) modulo 48k. A number of lemmata on these congruences have been
established by the author already; completion of a handful of further results will allow for
Salié-like formulae for the Kloosterman sums

Lq(n,m) :=
∑′

h (mod q)

exp
{
πiΛ(h, q)− 2πi(hn+ 2̄h̄m)/q

}
(q = pα),

where hh̄ ≡ 1 (mod q).

1Although the proofs of Theorem 2.1 given in [8] rely on intricate symbolic manipulations and well-known
q-series identities, many of those used identities were historically discovered and proved using the theory
of modular forms.
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